

ProductInformation

B-NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE REDUCED FORM TETRA(CYCLOHEXYLAMMONIUM) SALT Sigma Prod. No. N5130

CAS NUMBER: 100929-71-3

SYNONYMS: NADPH, ß-NADPH, TPNH (Also available as potassium, tris, and sodium

salts)

ANALOGS: 3'-β-NADPH, α-NADPH, DeaminoNADPH, ThioNADPH

PHYSICAL PROPERTIES:

Appearance: white to light yellow powder Molecular Formula: $C_{21}H_{30}N_7O_{17}P_3A(C_6H_{13}N)_4$

Formula Weight: 1142.1 $E^{mM}(340nm) = 6.22 (pH > 10)$ (A260nm/A340nm) = 2.32

DESCRIPTION:

ß-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form, is prepared by the chemical reduction of ß-Nicotinamide Adenine Dinucleotide Phosphate. The cyclohexylammonium form is prepared for work requiring sodium free systems.

STABILITY / STORAGE AS SUPPLIED:

The recommended storage condition for ß-NADPH is dark and desiccated at -20°C. The expected shelf-life is approximately two years. The normal impurities and/or decomposition products are ß-NADP and Monophospho-Adenosine 5'-Diphosphoribose.

SOLUTION / SOLUTION STABILITY:

Sigma routinely tests the solubility of this product at 50 mg/mL in 0.01M sodium hydroxide. A clear, light yellow solution is obtained. A 0.5mM solution in 0.02M NaOH (pH 12.3) showed no loss of purity in a week at 4°C or -85°C, but a 13% loss at -20°C.

B-NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATEREDUCED FORM TETRA(CYCLOHEXYLAMMONIUM) SALT Sigma Prod. No. N5130

APPLICATIONS:

ß-NADPH is a product of the pentose phosphate pathway, a multifunctional pathway whose primary purpose is to generate reducing power in the form of β-NADPH.² β-NADPH transfers H⁺ and 2e⁻ to oxidized precursors in the reduction reactions of biosynthesis. Thus, β-NADPH cycles between catabolic and biosynthetic reactions and serves as the carrier of reducing power in the same way that ATP serves as the carrier of energy.³ β-NADPH is also involved with Cytochrome P450 electron transport systems.²

Enzymes employing ß-NADPH as a coenzyme include glutathione reductase, diacetyl reductase, dihydrofolate reductase, glutamic dehydrogenase, p-hydroxybenzoate hydroxylase, NADPH-FMN oxidoreductase, nitrate reductase and thioredoxin reductase.

REFERENCES:

- 1. Passonneau, J.V. and O.H. Lowry, *Enzymatic Analysis A Practical Guide*, p. 15.
- 2. *Textbook of Biochemistry With Clinical Correlations*, Thomas M Devlin, Editor, Wiley-Liss, p. 360-365 and p. 987.
- 3. Biochemistry A Problems Approach, William B. Wood, et.al., Editors, W.A. Benjamin, Inc., p. 195.