

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone 800-325-5832 • (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

Butyrylcholinesterase from equine serum

Catalog Number C7512 Storage Temperature –20 °C

CAS RN 9001-08-5 EC 3.1.1.8 Synonyms: BChE; Acylcholine acylhydrolase; Pseudocholinesterase; Non-specific cholinesterase

Product Description

Butyrylcholinesterase (BChE) belongs to the same structural class of proteins, the esterase/lipase family, as acetylcholinesterase (AchE, EC 3.1.1.7). They are serine hydrolases that share substantial structural similarities, but differ in substrate specificities and inhibitor sensitivities.^{1,2} BChE can, unlike AChE, efficiently hydrolyze larger esters of choline such as butyrylcholine and benzoylcholine.

Butyrylcholine $\xrightarrow{\text{BChE}}$ butyric acid + choline H_2O

Although BChE is found in the serum, hemopoietic cells, liver, lung, heart, and the central nervous system of vertebrates, it has no known physiological function.^{3,4}

BChE is a tetrameric glycoprotein with four equal subunits (110 kDa).⁴

Molecular weight:⁵ 440 kDa (tetramer)

Carbohydrate content (residues/monomer):⁶ Glucosamine 22 Hexoses 17 N-Acetylneuraminic acid 6

Extinction coefficient:⁶ $E^{1\%}$ = 13.6 (280 nm)

pH Optimum:⁷ 6.0–8.0

Activators:² Ca⁺² and Mg⁺²

Substrates (relative reaction rate):⁶

Butyrylcholine	, 1.0
Acetylcholine	0.4
Butyrylthiocholine	0.5
Acetylthiocholine	0.4
Also: propionylcholine, succinylcholine, benzoylch	

Also: propionylcholine, succinylcholine, benzoylcholine, propionylthiocholine

Inhibitors:⁷ Betaine, nicotine, organophosphates, carbamates

Selective inhibition of BChE activity can be used in the detection of organophosphates.⁸ Its use in the treatment of organophosphate toxicity shows promise and there is a correlation between the level of BChE in human blood and degree of protection against potentially toxic nerve agents.⁴

There has also been interest in the roles of cholinesterases with regard to Alzheimer's disease. Investigations into selective inhibitors may provide a clearer picture of the physiological role of BChE in both healthy and diseased individuals.³

This product (C7512) is prepared from equine serum using ammonium sulfate fractionation. It is supplied as a lyophilized powder.

Protein: ~70% (biuret) balance primarily phosphate buffer salts

Specific activity: ≥10 units/mg protein

Unit definition: One unit will hydrolyze 1.0 micromole of butyrylcholine to choline and butyrate per minute at pH 8 at 37 $^{\circ}$ C.

BChE is assayed titrimetrically in a 50.4 ml reaction mixture containing 4 mM butyrylcholine, 1600 mM MgCl₂, 100 mM NaCl, and 30–60 units BChE at pH 8 and 37 $^\circ$ C.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

BChE is soluble in cold water (60 units/ml).

Storage/Stability

Store the product at –20 °C. When stored at –20 °C representative lots of BChE have remained within specifications for seven years.

References

- 1. Kovarik, Z., *et al.*, Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Biochem. J., **373**, 33-40 (2003).
- Chatonnet, A., and Lockridge, O., Comparison of Butyrylcholinesterase and acetylcholinesterasse. Biochem. J., 260, 625-34 (1989).
- Savini, L., *et al.*, Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. J. Med. Chem., **46**, 1-4 (2003).

- Blong, R.M., *et al.*, Tetramerization domain of human butyrylcholinesterase is at the C-terminus. Biochem. J., **327**, 747-57 (1997).
- Lee, J.C., and Harpst, J.A., Physical properties and subunit structure of butyrylcholinesterase from horse serum. Biochemistry, **12**,1622-30 (1973).
- Main, A., *et al.*, The purification of cholinesterase from horse serum. Biochem. J., **143**, 733 (1974).
- Augustinsson, K., Butyryl and Propionylcholinesterases and Related Types of Serine-Sensitive Esterases. In The Enzymes, IV, (Boyer, P., et al., eds.,), Academic Press, (New York, NY: 1960) p. 521.
- Beattie, B.D., *et al.*, Determination of butyrylcholinesterase inhibition using ion transfer across the interface between two immiscible liquids. Anal. Chem., **66**, 52-57 (1994).
- Ralston, J.S., *et al*, Use of procainamide gels in the purification of human and horse serum cholinesterases. Biochem. J., **211**, 243-250 (1983).

GRO, JWM, RBG, MAM 11/06-1

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.