

MKK7 α 1, ACTIVE
Human, Recombinant
Expressed in *E. coli*

Product Number **M 1814**
Storage Temperature –70 °C

Synonyms: MAP Kinase Kinase 7 α 1

Product Description

MKK7 α 1 is produced from a DNA sequence corresponding to the last 333 amino acids of human MKK7 α 1, containing a glutathione S-transferase (GST) tag at the amino terminus. The recombinant protein is expressed in *E. coli*, and is purified by affinity chromatography on glutathione-agarose. The molecular mass of the fusion protein is approximately 65 kDa. MKK7 α 1 is activated by MEKK and, thus, is suitable for phosphorylation assays. The product contains 100 μ g MEKK per mL as a minor contaminant.

The mitogen-activated protein kinase kinases (MAPKKs, MKKs or MEKs) are a family of Thr/Tyr dual specificity protein kinases, upstream of the MAP kinases, that play a central role in mitogenic signaling, transducing extracellular signals to intracellular targets, including transcription factors controlling the expression of genes essential to many cellular processes.^{1,2} These upstream kinases are activated by a number of signalling molecules, such as growth factors, or by cellular stress, such as temperature, pH, or osmotic shock. Once activated, MAP kinases phosphorylate a number of cytoplasmic and nuclear regulatory proteins. The cellular response to the initial extracellular signal or event may be differentiation, proliferation, or apoptosis.³ At least three families of MAPKs have been identified in mammals: ERK (extracellular signal-regulated kinases), JNK (c-Jun N-terminal kinases), and p38 MAPK (also called stress-activated protein kinase).⁴

The JNK signaling pathway is activated by exposure of cells to environmental stress and by the treatment of cells with cytokines. The activation of JNK is mediated by MKK4 and MKK7 in a signaling pathway involving MEKK.^{5,6,7} Unlike MKK4 (SEK1, JNKK1, SKK1, MEK4) that also activates p38 kinase, MKK7 (JNKK2, SKK4) is selective for JNK.⁸ JNK is activated by dual phosphorylation of Thr and Tyr within the kinase subdomain VIII Thr-Pro-Tyr motif. Recent studies indicate that MKK4 preferentially phosphorylates the Tyr residue while MKK7 preferentially phosphorylates Thr, and in some circumstances these two kinases may work in concert *in vivo*.⁶ Studies demonstrate that the

Product Information

JNK pathway regulates AP-1 (activator protein-1) transcriptional activity *in vivo*. JNK is required for embryonic morphogenesis, the regulation of cellular proliferation and apoptosis, and the response of cells to immunological stimuli.⁵

MKK7 isoforms are derived from alternative exon splicing in the *MKK7* gene that produces differences in the amino-terminus (α , β , and γ isoforms) and in the carboxyl-terminus (1 and 2 isoforms). Comparative studies demonstrate that the MKK7 isoforms differ in the extent of activation in response to different upstream components of the JNK signaling pathway.⁹

MKK7 α 1 lacks the amino-terminal extension that is present in the MKK7 β isoform. Thus, MKK7 α 1 binds poorly to the JNK substrate. Although the basal activity of MKK7 α 1 is very low, its activity is increased 34-fold in the presence of MEKK1, and the activated enzyme has approximately the same activity as non-activated MKK β or MKK γ .⁹

Reagent

Human recombinant MKK7 α 1 is supplied as a solution in 50 mM Tris-HCl, pH 7.5, containing 270 mM sucrose, 150 mM NaCl, 0.1 mM EGTA, 0.03 % Brij 35, 0.1 % (v/v) 2-mercaptoethanol, 0.1 mM benzamidine, 0.2 mM phenylmethylsulfonylfluoride (PMSF)

Precautions and Disclaimer

For laboratory use only. Not for drug, household or other uses.

Storage/Stability

The protein is stable for at least six months when stored at –70 °C. Centrifuge the original vial after thawing and prior to removing the cap for maximum recovery of product. After initial thawing, store the remaining solution in single-use aliquots at –70 °C. Avoid repeated freeze-thaw cycles. Do not store in a frost-free freezer.

Product Profile

Purity is approximately 70% by SDS-PAGE with Coomassie blue staining, with the major band corresponding to the expected molecular weight of 65 kDa. The preparation may contain several lower molecular weight bands.

Activity is determined using a coupled assay system in which MKK7 α 1 phosphorylates JNK2 α 2/SAPK1 α that, in turn, phosphorylates AFT2. One unit of JNK2 α 2/SAPK1 α activity equals one nmole of phosphate incorporated into AFT2 per minute at pH 7.2 and 30 °C. One unit of MKK7 α 1 activity equals one unit of JNK2 α 2/SAPK1 α activity.

References

1. Seger, R., and Krebs, E.G., The MAPK signaling cascade. *FASEB J.*, **9**, 726-735 (1995).
2. Davis, R.J., The mitogen-activated protein kinase signal transduction pathway. *J. Biol. Chem.*, **268**, 14553-14556 (1993).
3. Mertens, S. et al., SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. *FEBS Lett.*, **383**, 273-276 (1996).
4. Schaeffer, H.J., and Weber, M.J., Mitogen-activated protein kinases: specific messages from ubiquitous messengers. *Mol. Cell. Biol.* **19**, 2435-2444 (1999).
5. Davis, R. J., Signal transduction by the c-Jun N-terminal kinase. *Biochem. Soc. Symp.*, **64**, 1-12 (1999).
6. Cuenda, A., Mitogen-Activated Protein Kinase Kinase 4 (MKK4). *Int. J. Biochem. Cell Biol.*, **32**, 581-587 (2000).
7. Hirai, S. et al., Differential activation of two JNK activators, MKK7 and SEK1, by MKN28-derived nonreceptor serine-threonine kinase/mixed lineage kinase 2. *J. Biol. Chem.*, **273**, 7406-7412 (1998).
8. Wu, Z. et al., Molecular cloning and characterization of human JNKK2, a novel Jun NH₂-terminal kinase-specific kinase. *Mol. Cellular Biol.*, **17**, 7407-7416 (1997).
9. Tournier, C. et al., The *MKK7* gene encodes a group of c-Jun NH₂-terminal kinase kinases. *Mol. Cellular Biol.*, **19**, 1569-1581 (1999).

LLK/LMY 11/01

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.