

Technical Bulletin

# Branched Chain Amino Acid Kit

#### Catalogue number MAK562

### **Product Description**

Leucine, isoleucine and valine, known collectively as branched-chain amino acids (BCAA) are unique amongst the essential amino acids in that they undergo oxidation to a greater extent in the peripheral tissues than in liver<sup>1</sup>. Concentrations of these amino acids in plasma are altered by moderate and exhausting exercise, by diet and the nutritional status of the individual<sup>2</sup>.

In this assay, BCAA concentration is determined using a coupled enzyme reaction to catalyze the conversion of a BCAA molecule to its ketone form, which results in the conversion of NAD+ to NADH.3 NADH is detected by a colorimetric indicator, with an absorption maximum of 450 nm, proportional to the amount of BCAA present. BCAA Kit has been used to quantify the 3 BCAAs in various types of samples, such as food, dietary supplements, blood, serum, etc.

## Components

The kit is sufficient for 100 colorimetric assays in 96-well plates.

| • | Assay Buffer<br>Catalogue Number MAK562A     | 25 mL   |
|---|----------------------------------------------|---------|
| • | Enzyme Mix<br>Catalogue Number MAK562B       | 0.22 mL |
| • | WST Probe<br>Catalogue Number MAK562C        | 0.44 mL |
| • | Leucine Standard<br>Catalogue Number MAK562D | 0.11 mL |

# Reagents and Equipment Required but Not Provided

- 96-well plates, clear, flat bottom. It is recommended to use clear plates for colorimetric assays.
- Plate reader that is capable to read wavelength of 490 nm.
- Pipettors and Pipettes
- Vortex Mixer

#### Precautions and Disclaimer

For R&D use only. Not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

## Storage/Stability

The product is shipped on wet ice. Store at -20°C upon receipt.

#### **Preparation Instructions**

Briefly centrifuge vials before opening. Use ultrapure water for the preparation of reagents. Avoid repeated freeze/thaw cycles.

Assay Buffer: Allow buffer to come to room temperature.

Enzyme Mix: Reconstitute with 220  $\mu$ L Assay Buffer. Mix well by pipetting, then aliquot and store, protected from light, at 2–8° C. Suitable for use 2 months after reconstitution. Keep cold while in use.

WST Probe: Allow to thaw, then vortex and aliquot while cold. Store, at 2–8° C, shielded from light. Use within 2 months and keep cold while in use.

Leucine Standard: Allow to thaw. Store at 2-8 °C.

1



#### Procedure

All Samples and Standards should be run in triplicates.

#### Preparation of Leucine Standards

- 1. Dilute 10  $\mu$ L of the 10 mM Leucine Standard with 90  $\mu$ L ultrapure water to generate a 1 mM standard solution.
- 2. Add 0, 2, 4, 6, 8, and 10  $\mu$ L standard solution into a 96-well plate to generate 0, 2, 4, 6, 8, and 10 nmole/well calibration points. Add Assay Buffer to each well to bring the volume to 50  $\mu$ L.

#### Sample Preparation

Tissues (10 mg) or cells ( $\sim$ 2 X 10<sup>6</sup>) should be rapidly homogenized in 100  $\mu$ L cold assay buffer. Centrifuge at 13,000 x g for 10 minutes at 4° C to remove solids.

Serum and other liquid samples may be assayed directly.

If necessary, add Assay Buffer to each well to bring the volume to 50  $\mu$ L. It is recommended to test several sample dilutions to ensure the readings are within the linear range of the calibration curve.

**Note:** NADH or NADPH from cells and tissue extracts generate background reading for this assay. Always run a blank sample without the enzyme mix (as shown in right column of Table 1) and subtract its reading from that of the sample, in order to counter this effect.

#### Assay Reaction

1. Prepare the reaction mixes according to Table 1. 50  $\mu$ L of the appropriate reaction mix is required for each well.

**Table 1.**Preparation of Reaction Mixes

| Component    | Samples<br>and<br>Standards | Blank |
|--------------|-----------------------------|-------|
| Assay Buffer | 44 µL                       | 46 µL |
| Enzyme Mix   | 2 µL                        |       |
| WST Probe    | 4 µL                        | 4 μL  |

- 2. Add 50  $\mu$ L of the appropriate reaction mix to each well. Mix by using a horizontal shaker or pipetting.
- 3. Incubate the reaction for 30 minutes at room temperature (18-35°C) while protected from light.
- 4. Measure the absorbance at 450 nm ( $A_{450}$ ) using a plate reader.

#### Results

#### Calculations

The background for the assay is the value obtained for the 0 (blank) leucine standard. Subtract the blank value from all readings to eliminate background.

Use the values from the 6 Leucine concentration points (0-10 nmole/well) to plot a calibration curve and determine its slope.

**Note**: A fresh standard curve must be set up and read every time the assay is performed.

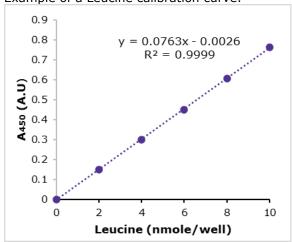
Subtract the blank sample (no enzyme mix) value from the sample readings to obtain the corrected measurement. Using the corrected measurements, determine the amount of BCAA present in the sample from the standard curve.

Concentration of BCAA (in nmol/µL or mM)

Sa/Sv = C

Sa = Concentration of BCAA in unknown sample, as calculated from the calibration curve

 $Sv = Sample volume (\mu L) added into the wells$ 


C = BCAA concentration in sample

For example, if the calculated concentration of the sample from the calibration curve is 6.2 nmole, and the amount of sample added to the well is  $40 \mu L$ , then:

 $C = 6.24 \text{ nmole} / 40 \mu L$ 

BCAA concentration in sample = 0.16 nmole/ $\mu$ L.

**Figure 1:** Example of a Leucine calibration curve.



# References

- 1. Gleeson, M. & Maughan R. J. *Clinica Chimica Acta*, 166: 163 (1987)
- 2. Lemon, P. W. R & Nagle, F. J. Med. Sci. Sports Exercise, 13: 141Yue F, Zhang J, Xu J, Niu T, Lü X, Liu M. (1981)
- 3. Livesey G & Lund P. *Biochem J*, 188: 705 (1980)

# Troubleshooting Guide

| Problem                      | Possible Cause                                            | Suggested Solution                                                                         |
|------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Assay not working            | Cold assay buffer                                         | Assay Buffer must be at room temperature                                                   |
|                              | Omission of step in procedure                             | Refer and follow Technical Bulletin precisely                                              |
|                              | Plate reader at incorrect wavelength                      | Check filter settings of instrument                                                        |
|                              | Type of 96 well plate used                                | For colorimetric assays, use flat bottom, clear plates                                     |
| Samples with erratic         | Samples prepared in different buffer                      | Use the Assay Buffer provided or refer to Technical Bulletin for instructions              |
| readings                     | Cell/Tissue culture samples were incompletely homogenized | Repeat the sample homogenization, increasing the length and extent of homogenization step. |
|                              | Samples used after multiple freeze-thaw cycles            | Aliquot and freeze samples if needed to use multiple times                                 |
|                              | Presence of interfering substance in the sample           | If possible, dilute sample further                                                         |
|                              | Use of old or inappropriately stored samples              | Use fresh samples and store correctly until use                                            |
| Lower/higher readings in     | Improperly thawed components                              | Thaw all components completely and mix gently before use                                   |
| samples and<br>standards     | Use of expired kit or improperly stored reagents          | Check the expiration date and store the components appropriately                           |
|                              | Allowing the reagents to sit for extended times on ice    | Prepare fresh Master Reaction Mix before each use                                          |
|                              | Incorrect incubation times or temperatures                | Refer to Technical Bulletin and verify correct incubation times and temperatures           |
|                              | Incorrect volumes used                                    | Use calibrated pipettes and aliquot correctly                                              |
| Non-linear<br>standard curve | Use of partially thawed components                        | Thaw and resuspend all components before preparing the reaction mix                        |
|                              | Pipetting errors in preparation of standards              | Avoid pipetting small volumes                                                              |
|                              | Pipetting errors in the Reaction Mix                      | Prepare a Master Reaction Mix whenever possible                                            |
|                              | Air bubbles formed in well                                | Pipette gently against the wall of the plate well                                          |
|                              | Standard stock is at incorrect concentration              | Refer to the standard dilution instructions in the Technical Bulletin                      |
|                              | Calculation errors                                        | Recheck calculations after referring to Technical Bulletin                                 |
|                              | Substituting reagents from older kits/lots                | Use fresh components from the same kit                                                     |
| Unanticipated                | Samples measured at incorrect wavelength                  | Check the equipment and filter settings                                                    |
| results                      | Samples contain interfering substances                    | If possible, dilute sample further                                                         |
|                              | Sample readings above/below the linear range              | Concentrate or dilute samples so readings are in the linear range                          |

#### Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

#### Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

#### Technical Service

Visit the tech service page on our web site at <a href="SigmaAldrich.com/techservice">SigmaAldrich.com/techservice</a>.

#### Standard Warranty

The applicable warranty for the products listed in this publication may be found at <a href="SigmaAldrich.com/terms">SigmaAldrich.com/terms</a>.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

