Rapid Sample Preparation Method for High Throughput Total Drug Analysis by LC-MS/MS

Nanying Bian ${ }^{1}$, Elissa Benson², Jason Blodgett², Thomas Onofrey ${ }^{2}$, John Lynch² and Aldo Pitt²,
Millipore Corporation, Bedford, MA ${ }^{1}$ and Millipore Corporation, Life Sciences Division, Danvers, MA ${ }^{2}$

Abstract
An automation compatible, high throughput sample preparation method for total drug analysis from serum or plasma samples in 96 -well MultiScreen ${ }^{\oplus}$ Deep Well Solvinert filter plates is demonstrated. Following in-plate protein precipitation, incubation and filtration, the filtrates were analyzed by LC$\mathrm{MS} / \mathrm{MS}$ to assess correlation and reproducibility for three different compounds (warfarin, propranolol and testosterone) in adut bovine serum. To in ination-based method provides comparable results to centrifugation with advantages of ease, speed, reproducibiity, and consistent removal of precipitated LC-MS/MS and LC-UV analyses is presented in which analytes extracted from plasma have been shown to be unaffected at concentrations as low as 1 nM .

Introduction

Requiring minimal method development, protein precipitation from serum or plasma with an organic solvent is a preferred sample preparation technique for total drug analysis in a high throughput setting. Samples are often centrifuged to remove precipitated species and the supernatant is extracted for analysis. The method requires careful sample handling to avoid interference from the precipitated protein with analysis. T
process can be labor-intensive and may or may not be process can be labor-inle.
automation compatible
Alternatively, protein precipitation can be performed in a Alternatively, protein precipitation can be performed in a
solvent-resistant 96 -well filter plate (MultiScreen Deep Well Solvinert plate). After protein precipitation and incubation in the device, vacuum filtration separates the filtrates from the precipitated proteins, providing clear filtrates from all 96 wells. This process is readily integrated into automated analytical techniques.

Experimental

General procedure for protein precipitation and filtration: To a MultiScreen Deep Well Solvinert plate (catalog \# MDRP NP4 05), $800 \mu \mathrm{l}$ of acetonitrile was added. Adult bovine serum (200 $\mu \mathrm{l})$) spiked with drugs was pulled into the pipette tip followed by $200 \mu \mathrm{l}$ of acetonitrile from the $800 \mu \mathrm{l}$ contained in the appropriate well(s) of the Deep Well plate to initiate precipitation. The 1:1 ACN:serum solution was added to the $600 \mu \mathrm{~L}$ of acetonitrile remaining in the well(s) to afford a final
4:1 ACN:serum mixture with a total volume of 1 mL . The plate 4:1 ACN:serum 2 minutes, incubated at $4{ }^{\circ} \mathrm{C}$ for $1 \mathrm{hr}^{1}$, then was shaken for 2 minutes,
filtered at 20 " Hg or higher.
filtered at 20 Hg or higher.
Three drugs, testosterone, propranolol, and warfarin, were tested at initial concentrations in the serum of $0.1 \mu \mathrm{M}, 0.5 \mu \mathrm{M}$, $1 \mu \mathrm{M}, 5 \mu \mathrm{M}$, and $10 \mu \mathrm{M}$.
Centrifugation: All protein precipitation, incubation and centrifugation steps were performed in a Greiner polypropylene 96 well Masterblock ${ }^{\circledR}$ plate in a Jouan CR 312 Centrifuge at $2000 \times \mathrm{g}$ for 5 minutes.
Standards: Analyte of interest was spiked into a 4:1 ACN:serum mixture that had been filtered through the MultiScreen Deep Well Solvinert plate to the appropriate concentration. All samples were diluted with an equal volume of water after filtration and prior to LC-MS/MS analysis. Thus, final analyte drug concentration in serum. Each concentration was studies in 6 replicate wells with 3 injections per well.

LC-MS/MS Method

LC-MS/MS analyses were performed using a Sciex ${ }^{\circledR}$ API2000 mass spectrometer coupled with an Agilent 1100 HPLC and well plate autosampler. A Phenomenex Synergi Hydrocartridge. For ESI-MS, Solvent A was 0.1% formic acid in water, solvent B was 100% methanol. For APCI, solvent A was water, solvent B was 100% methanol.
Warfarin: Injection volume: $15 \mu \mathrm{~L} /$ sample, flow rate $=300$ $\mu \mathrm{L} / \mathrm{min}, \mathrm{HPLC}$ solvent of $80 \% \mathrm{~A}$ to $10 \% \mathrm{~A}$ in 4 min , then to the positive mode with MS/MS monitored at $\mathrm{m} / \mathrm{z} 309 / 163$. Propranolol: Injection volume: $5 \mu \mathrm{~L} /$ /sample, flow rate $=300$ $\mu \mathrm{L} / \mathrm{min}, \mathrm{HPLC}$ solvent of $100 \% \mathrm{~A}$ for 2 min , gradient to 40
$\% \mathrm{~A}$ in 3 min , then returns to $100 \% \mathrm{~A}$ in 1 min . A TurbolonSpray (ESI) source was used in the positive mode with MS/MS monitored at m/z 260/116.
Testosterone: Injection volume: $30 \mu \mathrm{~L}$, flow rate $=500$ Testosterone: Injection volume: $30 \mu \mathrm{~L}$, flow rate $=500$
$\mu \mathrm{~L} / \mathrm{min}, 50 \% \mathrm{~A}$ to 0% over $2.5 \mathrm{~min}, 0 \% \mathrm{~A}$ to 50% over 1.5 $\mathrm{mL} / \mathrm{min}$, then remained at 50% A for 2 min . A Heated Nebulizer (APCI) source was used in the positive mode with MS/MS monitored at $\mathrm{m} / \mathrm{z} 289 / 97$.
MultiScreen Deep Well Solvinert Filter Plate

Drug recovery

${ }^{1}$ Polson, C.; Sarkar, P.; Incledon, B.; Raguvaran, V.; Grant, R.
Optimization of protein precipitation based upon effectiveness of Optimization of protein precipitation based upon effectiveness of
protein removal and ionization effect in liquid chromatography-tande protein removal and ionization effect in liquid chromatography-tandem
mass spectrometry, J. Chrom. B, 2003. 785, 263-275.

Comparison of MultiScreen Deep Well Solvinert Filtration and Centrifugation/Manual Transfer

Warfarin

Propranolol

Testosterone

Analyte concentration (nM)

Drug recovery at different concentrations by filtration through MultiScreen Deep Well Solvinert filter plates as compared to centrifugation followed by manual transfer is illustrated. Coefficient of variation: warfarin: standard $1.9 \sim 4.1 \%$; filtration $2.6 \sim 4.0 \%$, centrifugation 1.7~9.6 \%; propranolol: standard 3.5~10 \%; filtration $3.8 \sim 12 \%$; centrifugation $4.3 \sim 14 \%$; testosterone: standard 2.9~8.3 \%; filtration 2.7-8.6 \%; centrifugation 2.0 6.2 \%.

Study of impact from extractable species on LC-MS/MS and HPLC-UV

Raw LC-MS/MS chromatograms of warfarin is shown above: Ultrafiltrate of ACN and serum ($4: 1, \mathrm{v} / \mathrm{V}$) was obtained. Portion of this was spiked with 1 nM warfarin, diluted with equal volume of water and analyzed with LC-MS/MS (A). Another portion was spiked with 1 nM warfarin, filtered through MultiScreen
Deep Well Solvinert, diluted and analyzed (B). No ion suppression or other interference from extractable species is detected in the analysis.

HPLC-UV Chromatograms (214 nm) for warfarin is shown above: Chromatogram A: control sample for warfarin at $5 \mu \mathrm{M}$
in 80% acetonitrie; B: Warfarin at $5 \mu \mathrm{M}$ in $80 \% \mathrm{ACN}$ after 1 hr incubation and filtration through the device; C: $80 \% \mathrm{ACN}$ after 1 hr incubation and filtration through the device (extractables); D: 80% ACN only. No interference from
extractable is detected in the analysis.

Automation Compatibility (warfarin)

Conclusions

A method for total drug analysis from plasma with analysis by LC-MS/MS has been developed using the MultiScreen Deep Well Solvinert filter plate that is:

>Solvent resistant

>Precipitation/incubation/filtration all in one plate
>Particulate free filtrate
>Comparable to existing centrifugal methods
> automation compatible
$>$ Low binding, high recovery
>No interfering extractable to LC-MS/MS or HPLC-UV

