

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

UBIQUITIN-CARRIER PROTEIN H5c, GST TAGGED

Human, Recombinant Expressed in *E. coli*

Product Number U 8882

Product Description

Ubiquitin-carrier Protein H5c (UbcH5c), GST-tagged is produced from a DNA sequence corresponding to human Ubc5c fused to a Glutathione S-transferase tag. This recombinant protein has a molecular weight of approx. 47 kDa.

Degradation of short-lived, key regulatory proteins by the ubiquitin-proteasome pathway plays key roles in a number of cellular processes. A number of proteins are degraded by this system including: cyclins, cyclindependent kinases^{1,2} and their inhibitors, tumor suppressors, oncoproteins, and transcriptional activators and their inhibitors.

Two discrete steps are involved in the ubiquitin-mediated degradation of proteins: signaling by covalent conjugation of multiple ubiquitin moieties and degradation of the tagged substrate. Conjugation occurs by a three-step mechanism involving three different enzymes that act sequentially: E1, E2 and E3. Ubiquitin-activating enzyme (E1) catalyzes the activation of ubiquitin then E2 (ubiquitin-conjugating enzyme, or ubiquitin carrier protein) transfers activated ubiquitin to E3, which is bound to substrate. E3 catalyzes the polyubiquitination of the targeted protein. The polyubiquitin tagged protein is then degraded by the 26S proteasome in an ATP-dependent process, and free ubiquitin is released.³⁻⁵

Although it appears there is a single ubiquitin-activating enzyme (E1), a number of species or isoforms of ubiquitin-carrier proteins (E2s) and multiple families of ubiquitin-protein ligases (E3s) exist. Specific E2s may have overlapping functions or may be involved in specific cellular functions. UbcH5c mediates the degradation a myriad of short-lived regulatory proteins including the tumor suppressor p53 in the presence of E6/E6-AP or MDM2, the c-Fos transcription factor, and the signal-induced ubiquitination of $l\kappa B\alpha$, the processing of precursor of NF- $\kappa B1$ p105.

Reagent

UbcH5c, GST-tagged is supplied as 100 μ g protein in a solution of 50 mM HEPES, pH 7.6, 50 mM NaCl, 1 mM DTT, and 10% glycerol.

Precautions and Disclaimer

For laboratory use only. Not for drug, household or other uses. Please consult the Material Safety Data Sheet for handling recommendations before working with this material.

Storage/Stability

Store at –70 °C. Avoid repeated freeze-thaw cycles. Do not store in a frost-free freezer.

Product Profile

Purity: minimum 95% by SDS-PAGE

References

- 1. DeSalle, L.M. and Pagano, M., Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Lett., **490**, 179-189 (2001).
- Yew, P.R., Ubiquitin-mediated proteolysis of vertebrate G1 and S-phase regulators. J. Cell Physiol., 187, 1-10 (2001).
- Tanaka, K., et al., The ligation systems for ubiquitin and ubiquitin-like proteins. Mol. Cells, 8, 503-512 (1998).
- 4. Myung, J., et al., The ubiquitin-proteasome pathway and proteasome inhibitors. Med. Res. Rev., **21**, 245-273 (2001).
- 5. Benaroudj, N., et al., The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie, **83**, 311-318 (2001).
- 6. Hershko, A. and Ciechanover, A., The ubiquitin system. Annu. Rev. Biochem., **67**, 425-479 (1998).
- 7. Seufert, W., Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9, 543-550 (1990).

- 8. Jensen, J. P., et al., Identification of a family of closely related human ubiquitin conjugating enzymes. J. Biol. Chem., **270**, 30408-30414 (1995).
- Scheffner, M. et al., Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc. Natl. Acad. Sci. USA, 91, 8797-8801 (1994).
- Stancovski, I., et al., Degradation of the protooncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol. Cell. Biol. 15, 7106-7116 (1995).
- 11. Gonen, H, Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of $I\kappa B\alpha$. J. Biol. Chem. **274**, 14823-14830 (1999).
- Coux, O. and Goldberg, A.L., Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor κB1. J. Biol. Chem. 273, 8820-8828 (1998).

Manufactured for Sigma by Boston Biochem., Inc.

RBG 01/02