

User Guide

BST Max DNA Polymerase

Salt and Inhibitor Tolerant; Recombinant, from *E. coli*

SRE0113

Product Overview

Description

BST Max Isothermal DNA Polymerase is an engineered recombinant salt- and inhibitor-tolerant enzyme.

Applications for BST Max DNA Polymerase include: loop-mediated isothermal amplification (LAMP),¹ reverse transcription (RT) LAMP, and multiple displacement amplification (MDA).

The enzyme is supplied at 8U/uL.

Features

- Active from 25-65 °C (optimal at 65 °C)
- Optimal salt concentration 50-350 mM
- No 5'-3' or 3'-5' exonuclease activity
- Strong strand displacement activity

Unit Definition

One unit is the amount of enzyme required to incorporate 10 nmol of dNTP into acid insoluble material at 65 °C for 30 minutes.

Reagents Provided

- BST Max DNA Polymerase 8 units/µL in 10 mM Tris-HCl pH 7.5, 100 mM KCl, 0.005% Tween 20, 1 mM DTT, 0.1 mM EDTA, and 50% glycerol (SRE0113A)
- 10X BST Max Buffer (SRE0113B)
- 100 mM MgSO₄ (SRE0113C)

Materials and Reagents Required

(not included)

- Deoxynucleotide (dNTP) Mix, containing 10 mM each of dATP, dCTP, dGTP, and dTTP sodium salts (D7295)
- Nuclease-free water (W1754)
- Custom ordered primers specific to gene of interest (OLIGO)
- PCR tubes or plates
- Sample containing template DNA
- Thermal cycler, heat block, or incubator

Precautions and Disclaimer

This product is for R&D use only. Not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

Store at -20 °C.

Suggested Protocol

Step	Description		
	Reagent	Final Concentration	Amount per 25 µL reaction
Assemble Reaction Mix	10X Reaction buffer	1X	2.5 µL
	BST Max	8 U	1 µL
	dNTP Mix, 10 mM	1.4 mM	3.5 µL
	*10X Primer Mix	1X	2.5 µL
	**MgSO ₄	variable	variable
	Intercalating dye (optional)	variable	variable
	Nuclease-free Water	N/A	To 23 µL total

* A 10X Primer mix consists of 2 µM forward primer, 2 µM backward primer, 8 µM loop forward primer, 8 µM loop backward primer, 16 µM forward inner primer, and 16 µM backward inner primer. Primer concentrations may need to be optimized empirically.

** BST Max is a magnesium ion-dependent enzyme. Optimal concentrations of template DNA, primers, and MgSO₄ will be target-specific.

 Add Template

Aliquot 2 µL (>4pg total) of DNA template into PCR plate on ice. Add chilled reaction mix to wells.

 Amplify

Incubate reaction at 65 °C for 30 minutes (or up to 1 hour). Amplification can be monitored using a real time PCR instrument compatible with intercalating dye used in reaction setup. Alternatively, amplified product can be detected using various endpoint methods.²

Technical Considerations

- BST Max DNA Polymerase is most active at pH 8.5 in buffer supplemented with 4–20 mM MgSO₄ and 50–350 mM salt (NaCl or KCl) at 65 °C.
- Deactivation occurs when placing enzyme at 95 °C for 1 minute.
- Optimal concentration of MgSO₄ will be target-specific. The 1X BST Max buffer contains 4 mM MgSO₄. The concentration can be increased with the supplied MgSO₄ to improve sensitivity but should not exceed 8 mM as this may result in non-specific amplification. To optimize MgSO₄ concentration, follow the Suggested Protocol using a fixed template concentration and compare the following conditions side-by-side:

100mM MgSO ₄ Added (µL) [§]	Final MgSO ₄ Concentration (mM)
0	4
0.5	6
1	8

§ Based on a 25 µL final reaction volume

Include a no template control (NTC) to ensure absence of non-specific activity. Ideal MgSO₄ concentrations should maximize difference in time to result (e.g. cycle threshold value) between NTC and experimental sample.

Product Ordering

Order products online at SigmaAldrich.com.

Description	Catalogue Number
MMLV Reverse Transcriptase	M1302
GenElute™ Mammalian Genomic DNA Miniprep Kit	G1N10
GenElute™ PCR Clean-Up Kit	NA1020
GenElute™ Plant Genomic DNA Miniprep Kit	G2N70
GenElute™-E Single Spin DNA Cleanup Kit	EC600
Water, Microbial DNA-free	MBD0025
Nuclease-Free Water, for Molecular Biology	W1754

References

1. Notomi, T. et al., Nucleic Acids Res., 28, e63 (2000).
2. Fischbach, J. et al., BioTechniques., 58, e4 (2015).

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

Merck and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

© 2022 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.
SRE0113ug Rev 09/22

