

Data Sheet

SCC-61 Human Squamous Cell Carcinoma Cell Line

Cancer Cell Line

SCC280

Pack Size ≥1x10⁶ cells/vial

FOR RESEARCH USE ONLY

Not for use in diagnostic procedures. Not for Human or Animal Consumption.

Background

Squamous cell carcinoma of the head and neck (HNSCC) is the 9th-most common cancer worldwide and is characterized by a high rate of recurrence after therapy, with a median 5-year survival range of 40-50%. HNSCC tumors show a wide range of heterogeneity in response to radiation therapy. Cellular HNSCC models that demonstrate a range of radiation sensitivity are thus invaluable for elucidating the factors underlying radiation responses of cancer cells.

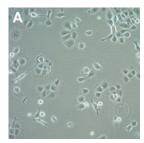
The SCC-61 human squamous cell carcinoma cell line, derived from an aggressive tongue squamous cell carcinoma,² is an established model for HNSCC. SCC-61 cells are relatively sensitive to radiation compared to other HNSCC cell lines and has a relatively stable genome.³ In culture SCC-61 cells grow robustly and are strongly adherent. SCC-61 cells have been characterized by positive expression of the SCC marker p63 (p40).⁴ SCC-61 cells have demonstrated utility in studies parsing mechanisms of radio-resistance in SCC tumor cells, as demonstrated by transformation of this cell line with factors conferring radio-resistance.⁵

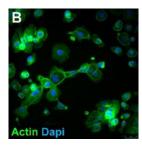
Source

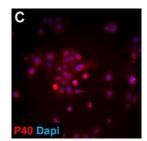
SCC-61 cell line was derived from a tongue squamous cell carcinoma of a male patient.²

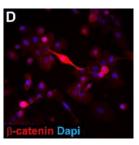
D3S1358: 15 D16S539: 9, 11 TH01: 7, 9 CSF1PO: 10, 12 D21S11: 28, 30 Penta D: 10, 12 D18S51: 12, 14 vWA: 16, 17 Penta E: 7, 11 D8S1179: 12, 14 D5S818: 12, 13 TPOX: 8 D13S317: 10, 12 FGA: 22, 25 D7S820: 8, 12 Amelogenin: X, Y

Cancer cell lines are inherently genetically unstable. Genetic instability may arise in the form of loss of heterozygosity of alleles at one or more genetic sites with increased passages.


Quality Control Testing


- Each vial contains ≥1x10⁶ viable cells.
- Cells are tested negative for infectious diseases by a Human Essential CLEAR panel by Charles River Animal Diagnostic Services.
- Cells are verified to be of human origin and negative for inter-species contamination from mouse, rat,
 Chinese hamster, Golden Syrian hamster, and non-human primate (NHP) as assessed by a Contamination
 Clear panel by Charles River Animal Diagnostic Services.
- Cells are negative for mycoplasma contamination.


Storage and Handling


SCC-61 Human Squamous Cell Carcinoma Cell Line should be stored in liquid nitrogen. The cells can be cultured for at least 10 passages after initial thawing without significantly affecting the cell marker expression and functionality.

Representative Data

Figure 1. Bright-field image of cells one day after thaw (**A**). SCC-61 cells express actin (**B**, Cat. No. P5282) P40 (**C**, MABS519-AF488) and β -catenin (**D**, ABE208).

Protocols

Thawing Cells

1. Do not thaw the cells until the recommended medium is on hand. Cells can grow on normal tissue cultureware surfaces without any additional coating.

SCC-61 Expansion Medium: Cells are thawed and expanded in DMEM/F12 (Cat. No. D8062), 20% FBS (Cat. No. ES-009-B), and 0.4 μg/mL hydrocortisone (Cat. No. H0888).

2. Remove the vial of frozen SCC-61 cells from liquid nitrogen and incubate in a 37 °C water bath. Closely monitor until the cells are completely thawed. Maximum cell viability is dependent on the rapid and complete thawing of frozen cells.

IMPORTANT: Do not vortex the cells.

- 3. As soon as the cells are completely thawed, disinfect the outside of the vial with 70% ethanol. Proceed immediately to the next step.
- 4. In a laminar flow hood, use a 1- or 2-mL pipette to transfer the cells to a sterile 15 mL conical tube. Be careful not to introduce any bubbles during the transfer process.
- 5. Using a 10 mL pipette, slowly add dropwise 9 mL of SCC-61 Expansion Medium (Step 1 above) to the 15 mL conical tube.

IMPORTANT: Do not add the entire volume of media all at once to the cells. This may result in decreased cell viability due to osmotic shock.

- 6. Gently mix the cell suspension by slowly pipetting up and down twice. Be careful not to introduce any bubbles. **IMPORTANT:** Do not vortex the cells.
- 7. Centrifuge the tube at $300 \times g$ for 2-3 minutes to pellet the cells.

- 8. Decant as much of the supernatant as possible. Steps 5-8 are necessary to remove residual cryopreservative (DMSO).
- 9. Resuspend the cells in 15 mL of SCC-61 Expansion Medium.
- 10. Transfer the cell mixture to a T75 tissue culture flask.
- 11. Incubate the cells at 37 °C in a humidified incubator with 5% CO₂.

Subculturing Cells

SCC-61 cells are highly adherent. To detach the cells, we recommend using a higher strength trypsin (Cat. No. T2605) and a longer incubation time.

- 1. Do not allow the cells to grow to confluency. SCC-61 should be passaged at ~80-85% confluence.
- 2. Carefully remove the medium from the T75 tissue culture flask containing the 80% confluent layer of SCC-61 cells.
- 3. Rinse the flask with 10 mL 1X PBS. Aspirate after the rinse.
- 4. Apply 5-7 mL of Trypsin-EDTA (Cat. No. T2605) and incubate in a 37 °C incubator for 8-10 minutes.
- 5. Inspect the flask and ensure the complete detachment of cells by gently tapping the side of the flask with the palm of your hand.
- 6. Add 5-7 mL of SCC-61 Expansion Medium to the plate.
- 7. Gently rotate the flask to mix the cell suspension. Transfer the dissociated cells to a 15 mL conical tube.
- 8. Centrifuge the tube at 300 *x g* for 3-5 minutes to pellet the cells.
- 9. Discard the supernatant, then loosen the cell pellet by tapping the tip of the tube with a finger.
- 10. Apply 2-5 mL of SCC-61 Expansion Medium to the conical tube and resuspend the cells thoroughly. **IMPORTANT:** Do not vortex the cells.
- 11. Count the number of cells using a hemocytometer.
- 12. Plate the cells to the desired density. Typical split ratio is 1:6.

Cryopreservation of Cells

SCC-61 Head & Neck Squamous Cell Carcinoma Cell Line may be frozen in SCC-61 Expansion Medium and 10% DMSO using a Nalgene® slow freeze Mr. Frosty® container.

References

- 1. J Immunother Cancer. 2019; 7(1): 184.
- 2. Br J Cancer. 1984; 49(5): 595-601.
- 3. Int J Radiat Oncol Biol Phys. 1991; 20(4): 733-8.
- 4. Diagn Cytopathol 2009; 37(3): 178-83.
- 5. Proc Natl Acad Sci USA. 2004; 101(6): 1714-9.

Academic Use Agreement

Subject to local law

THIS PRODUCT MAY ONLY BE USED BY INDIVIDUALS EMPLOYED BY AN ACADEMIC INSTITUTION AND IS INTENDED SOLELY TO BE USED FOR ACADEMIC RESEARCH, WHICH IS FURTHER DEFINED BELOW. BY OPENING THIS PRODUCT, YOU ("PURCHASER") HEREBY REPRESENT THAT YOU HAVE THE RIGHT AND AUTHORITY TO LEGALLY BIND YOURSELF AND/OR YOUR EMPLOYER INSTITUTION, AS APPLICABLE, AND CONSENT TO BE LEGALLY BOUND BY THE TERMS OF THIS ACADEMIC USE AGREEMENT. IF YOU DO NOT AGREE TO COMPLY WITH THESE TERMS, YOU MAY NOT OPEN OR USE THE PRODUCT AND YOU MUST CALL MILLIPORESIGMA ("SELLER") CUSTOMER SERVICE (1-800-645-5476) TO ARRANGE TO RETURN THE PRODUCT FOR A REFUND.

"Product" means SCC-61 Human Squamous Cell Carcinoma Cell Line (SCC280).

"Academic Research" means any internal in vitro research use by individuals employed by an academic institution. Academic Research specifically excludes the following uses of whatever kind or nature:

Re-engineering or copying the Product

Making derivatives, modifications, or functional equivalents of the Product

Obtaining patents or other intellectual property rights claiming use of the Product

Using the Product in the development, testing, or manufacture of a Commercial Product

Using the Product as a component of a Commercial Product

Reselling or licensing the Product

Using the Product in clinical or therapeutic applications including producing materials for clinical trials

Administering the Product to humans

Using the Product in collaboration with a commercial or non-academic entity

"Commercial Product" means any product intended for: (i) current or future sale; (ii) use in a fee-for-service; or (iii) any diagnostic, clinical, or therapeutic use.

Access to the Product is limited solely to those officers, employees, and students of PURCHASER's academic institution who need access to the Product to perform Academic Research. PURCHASER shall comply with all applicable laws in its use and handling of the Product and shall keep it under reasonably safe and secure conditions to prevent unauthorized use or access.

These use restrictions will remain in effect for as long as PURCHASER possesses the Product.

COMMERCIAL OR NON-ACADEMIC ENTITIES INTERESTED IN PURCHASING OR USING THE PRODUCT MUST CONTACT licensing@emdmillipore.com AND AGREE TO SEPARATE TERMS OF USE PRIOR TO USE OR PURCHASE.

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

20492996 Ver 3.0, Rev22MAY2024, UD

