

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

DL-Buthionine-[S,R]-sulfoximine

Product Number **B 2640** Storage Temperature 2-8 °C

Product Description

Molecular Formula: C₈H₁₈N₂O₃S Molecular Weight: 222.3 CAS Number: 5072-26-4

Melting point: $214-215.5 \,^{\circ}\text{C}$ (decomposition)¹ Specific rotation: 0° (c = 1, 1 M HCl at 25 $^{\circ}\text{C}$)

Synonym: BSO

DL-Buthionine-(S,R)-sulfoximine is a selective inhibitor of γ -glutamyl cysteine synthase, an enzyme in the glutathione biosynthetic pathway. It is used as a tool for determining the depletion of glutathione. Depletion of intracellular glutathione by BSO has been associated with increased sensitivity of tumor cells to neoplastic agents.²

The synthesis and enzyme inhibiting properties of this compound have been reported. The mechanism of action and related information on cytotoxicity and chemosensitization have also been published.

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

The product is soluble in water (50 mg/ml), yielding a clear to very slightly hazy, colorless to yellow solution. Heat and/or sonication may be required to dissolve the material.

References

- Griffith, O. W., and Meister, A., Potent And Specific Inhibition of Glutathione Synthesis by Buthionine Sulfoximine (S-n-Butyl Homocysteine Sulfoximine). J. Biol. Chem., 254(16), 7558-7560 (1979).
- 2. The Merck Index, 12th ed., Entry# 1556.
- Griffith, O. W., Mechanism of Action, Metabolism, and Toxicity of Buthionine Sulfoximine and its Higher Homologs, Potent Inhibitors of Glutathione Synthesis. J. Biol. Chem., 257(22), 13704-13712 (1982).
- 4. Kramer, R. A., et al., Chemosensitization of L-phenylalanine Mustard by the Thiol-modulating Agent Buthionine Sulfoximine. Cancer Res., **47(6)**, 1593-1597 (1987).
- Green, J. A., et al., Potentiation of Melphalan Cytotoxicity in Human Ovarian Cancer Cell Lines by Glutathione Depletion. Cancer Res., 44(11), 5427-5431 (1984).
- Friedman, H. S., et al., Increased Melphalan Activity in Intracranial Human Medulloblastoma and Glioma Xenografts Following Buthionine Sulfoximine-mediated Glutathione Depletion. J. Natl. Cancer Inst., 81(7), 524-527 (1989).

IRB/RXR 11/02