

Restriction Endonuclease Hind II

From Haemophilus influenzae Rd com-10

2500 units (3-10 U/μl) Cat. No. 10 656 305 001

(ii) Version 23 Content version: June 2017

Store at -15 to -25° C

C+-	L:::	tv/S	۵	
. 31 <i>2</i> 1	rmi	IV/.7	ш	ane

The undiluted enzyme solution is stable when stored at -15 to -25°C until the control date printed on the label.Do not store below -25°C to avoid freezing.

Sequence specificity Hind II recognizes the sequence GTPy/PuAC and generates fragments with blunt ends (1)

Compatible ends

Hind II generates fragments with blunt ends and is compatible to any other blunt end.

Isoschizomers

Hind II is an isoschizomer to Hinc II.

Methylation sensitivity

Hind II is inhibited by 6-methyladenine as indicated (*). Furthermore Hind II is inhibited by 5-hydroxymethyl cytosine at the 3'-C residue of the recognition

sequence.

Storage buffer

20 mM Tris-HCl, 50 mM NaCl, 0.1 mM EDTA, 15 mM Dithioerythritol, 0.05% Polydocanol, 50% Glycerol (v/v), pH approx. 7.5 (at 4°C)

Suppl. Incubation buffer (10x)

100 mM Tris-HCl, 500 mM NaCl, 100 mM MgCl₂, 10 mM Dithioerythritol, pH 7.5 (at 37° C),

(≜ SuRE/Cut Buffer M)

Activity in SuRE/

Bold face printed buffer indicates the recommended Cut Buffer System buffer for optimal activity:

Α	В	L	M	Н
100%	100%	25-50%	100%	50-75%

Incubation temperature

37°C

Unit definition

One Unit is the enzyme activity that completely cleaves 1 μg λ DNA in 1 h at **37°C** in the SuRE/Cut Buffer **M** in a total volume of 25 μl.

Typical experiment

Component	Final concentration
DNA	1 μg
10 × SuRE/Cut Buffer M	2.5 μl
Sterile redist. water	Up to a total volume of 25 μl
Restriction enzyme	1 unit

Incubate at 37°C for 1 h.

Heat Inactivation

Hind II can be heat inactivated by 15 min incubation at 65°C.

Number of cleavage sites on different DNAs (2):

λ	Ad2	SV40	Φ X174	M13mp7	pBR322	pBR328	pUC18
35	25	7	13	2	2	2	1

Activity in PCR buffer

Relative activity in PCR mix (Tag DNA Polymerase buffer) is 100%. The PCR mix contained λ target DNA, primers,10 mM Tris-HCl (pH 8.3, 20°C), 50 mM KCl, 1.5 mM MgCl₂, 200 µM dNTPs, 2.5 U Taq DNA polymerase. The mix was subjected to 25 amplification cycles

Ligation and recutting assay

Hind II fragments obtained by complete digestion of 1 μg λDNA are ligated with 1 U T4-DNA ligase (Cat. No. 10 481 220 001) in a volume of 10 ml by incubation for 16 h at 25°C in 66 mM Tris-HCl, 5 mM MgCl₂, 5 mM dithiothreitol, 1 mM ATP, pH 7.5 (at 20°C) resulting in >70 % recovery of 1 μ g $\lambda DNA \times \textit{Hin}d$ II fragments. Subsequent re-cutting with Hin d II yields > 95% of the typical pattern of $\lambda DNA \times Hind$ II fragments

Troubleshooting

A critical component is the DNA substrate. Many compounds used in the isolation of DNA e.g. phenol, chloroform, EtOH, SDS, high levels of NaČl, metals (e.g. Hg²⁺, Mn²⁺) inhibit or alter recognition specificity of many restriction enzymes. Such compounds should be removed by EtOH precipitation followed by drying, before the DNA is added to the restriction digest reaction.

Quality control

Lot-specific certificates of analysis are available at www.lifescience.roche.com/certificates.

Absence of unspecific endonuclease activities

1 μ g λ DNA or pBR322 DNA is incubated for 16 h in 50 µl SuRE/Cut buffer M with excess of Hind II. The number of enzyme units which do not change the enzyme-specific pattern is stated in the certificate of analysis

Absence of exonuclease activity

Approx. 5 μg [³H] labeled calf thymus DNA are incubated with 3 µl Hind II for 4 h at 37°C in a total volume of 100 μl 50 mM Tris-HCl, 10 mM MgCl₂, 1 mM dithioerythritol, pH approx. 75. Under these conditions, no release of radioactivity is detectable, as stated in the certificate of analysis.

References

- Kelly, Jr., T. J. & Smith, H. O. (1970) *J. Mol. Biol.* **51,** 393. Kessler, C. & Manta, V. (1990) *Gene* **92,** 1–248.
- Rebase The Restriction Enzyme Database http://rebase.neb.com

Ordering Information

Product	Application	Packsize	Cat. No.
Restriction Enzymes	DNA restriction digestion	Please refer to websit	te
T4 DNA Ligase	Ligation of sticky- and blunt- ended DNA fragments.	100 U 500 units (1 U/μl)	10 481 220 001 10 716 359 001
SuRE/Cut Buffer Set for Restriction Enzymes	Incubation buffers A, B, L, M and H for restriction enzymes	1 ml each (10× conc. solutions)	11 082 035 001
SuRE/Cut Buffer A	Restriction enzyme incubation	5 × 1 ml (10× conc. solution)	11 417 959 001
SuRE/Cut Buffer B	Restriction enzyme incubation	5×1 ml (10× conc. solution)	11 417 967 001
SuRE/Cut Buffer H	Restriction enzyme incubation	5×1 ml ($10 \times$ conc. solution)	11 417 991 001
SuRE/Cut Buffer L	Restriction enzyme incubation	5 × 1 ml (10× conc. solution)	11 417 975 001
SuRE/Cut Buffer M	Restriction enzyme incubation	5×1 ml ($10 \times$ conc. solution)	11 417 983 001
Water, PCR Grade	Specially purified, double-distilled.	100 ml (4 vials of 25 ml)	03 315 843 001
	deionized, and autoclaved	25 ml (25 vials of 1 ml)	03 315 932 001
		25 ml (1 vial of 25 ml)	03 315 959 001

Changes	
previous	version

Editorial changes

Trademarks

HIGH PURE and SURE/CUT are trademarks of Roche. All other product names and trademarks are the property of their respective owners.

Regulatory Disclaimer

For life science research only. Not for use in diagnostic procedures.

Disclaimer of License

For patent license limitations for individual products please refer to: <u>List of biochemical reagent products</u>

Commonly used bacterial strains

Strain	Genotype
BL21	<i>E. coli B F</i> $^-$ <i>dcm ompT hsdS(r_B- m_B-) gal</i> (Studier, F.W. <i>et al</i> (1986) <i>J. Mol. Biol.</i> , 189 , 113.)
C600 ^e	supE44 hsdR2 thi-1 thr-1 leuB6 lacY1 tonA21; (Hanahan, D. (1983) J. Mol. Biol. 166 , 557.)
DH5α	supE44 Δ(lacU169 (φ80d/acZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1; (Hanahan, D. (1983) J. Mol. Biol. 166 , 557.)
HB101	supE44 hsdS20 recA13 ara-14 proA2 lacY1 galK2 rpsL20 xyl-5 mtl-1; (Hanahan, D., (1983) J. Mol. Biol. 166 , 557.)
JM108	recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi Δ (lac-proAB); (Yanisch- Perron, C. et al., (1985) Gene 33 , 103.)
JM109	recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi Δ (lac-proAB) F[traD36proAB ⁺ , lacl ^q lacZ Δ M15]; (Yanisch- Perron, C. et al., (1985) Gene 33 , 103.)
JM110	rpsL (Str ^f) thr leu thi-I lacY galK galT ara tonA tsx dam dcm supE44 Δ (lac-proAB) F[traD36proAB ⁺ , lacf ^f lacZ Δ M15]; (Yanisch- Perron, C. et al., (1985) Gene 33 , 103.)
K802	supE hsdR gal metB; (Raleigh, E. et al., (1986) Proc.Natl. Acad.Sci USA, 83, 9070.; Wood, W.B. (1966) J. Mol. Biol., 16 , 118.)
SURE ^r	recB recJ sbc C201 uvrC umuC::Tn5(kan ^r) lac , Δ(hsdRMS) endA1 gyrA96 thi relA1 supE44 F'[proAB ⁺ lacI ^q lacZΔM15 Tn10 (tet ^r); (Greener, A. (1990) Stratagies, 3 , 5.)
TG1	supE hsd Δ5 thi Δ(lac-proAB) F[traD36proAB ⁺ , lacl ^q lacZΔM15]; (Gibson, T.J. (1984) PhD Theses. Cambridge University, U.K.)
XL1-Blue ^r	supE44 hsdR17 recA1 endA1 gyrA46 thi relA1 lac F'[proAB ⁺ , lacl ^q lacZ∆M15 Tn10 (tet ^{f)}]; (Bullock et al., (1987) BioTechniques, 5, 376.)

Contact and Support

To ask questions, solve problems, suggest enhancements and report new applications, please visit our **Online Technical Support Site**.

To call, write, fax, or email us, visit $\underline{sigma-aldrich.com}$, and select your home country. Country-specific contact information will be displayed.

