

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

L-Methionine

Product Number **M9625** Store at Room Temperature

Product Description

Molecular Formula: C₅H₁₁NO₂S Molecular Weight: 149.2 CAS Number: 63-68-3

pK_A: 2.28, 9.21¹

Melting Point: 280 - 282 °C ²

Rotation: +23.40 (50 mg/ml, 6 M HCl, 20 °C)²

Methionine is one of the common sulfur-containing amino acids. The biosynthesis of methionine initially occurs by the condensation of homoserine and succinyl-CoA via the action of homoserine acyltransferase. Subsequently, cystathionine γ -synthase displaces the succinate group with cysteine to give cystathionine. Cystathionine α -lyase then hydrolyzes cystathionine to produce homocysteine. Transfer of a methyl group from N^5 -methyltetrahydrofolate to the homocysteine forms methionine. 3

Methionine is a common methyl-group donor to various substrates, such as creatine, epinephrine, ergosterol, and choline.³ Methionine is a relatively hydrophobic amino acid residue, and as such is frequently buried in protein three-dimensional structure, making modification of methionine residues difficult.⁴

A review of the oxidation of methionine as it relates to oxidation of β-amyloid peptides has been published.⁵

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This product is soluble in 1 M HCl (50 mg/ml), yielding a clear, colorless solution. This product is also soluble in water (50 mg/ml), with heat as needed.

Storage/Stability

Stock solutions are stable for approximately five years at 2 - 8 °C.

References

- Biochemistry: A Case-Oriented Approach, 6th ed., Montgomery, R., et al., ed., Mosby (St. Louis, MO: 1996), p. 34.
- 2. The Merck Index, 12th ed., Entry# 6053.
- 3. Biochemistry, 2nd ed., Lehninger, A. L., Worth Publishers (New York, NY: 1975), pp. 699-701, 713-714.
- 4. Proteins LabFax, Price, N. C., ed., Bios Scientific (Oxford, UK: 1996), p. 290.
- Schoneich, C., Redox processes of methionine relevant to beta-amyloid oxidation and Alzheimer's disease. Arch. Biochem. Biophys., 397(2), 370-376 (2002).

GCY/RXR 5/06