SIGMA-ALDRICH®

sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information

CK1ε, active, GST-tagged, human PRECISIO[®] Kinase recombinant, expressed in *Sf*9 cells

Catalog Number **SRP5015** Storage Temperature –70 °C

Synonyms: CSNK1E, HCKIE, MGC10398

Product Description

CK1 ϵ is a member of the CK1 family of serine/threonine protein kinases, which play an important role in diverse cell processes, including DNA replication and repair. CK1 ϵ is a regulator of Yes-associated protein (YAP) transcription coactivator, which is a key regulator of organ size and a candidate human oncogene. CK1 ϵ is activated by CCK2R and this then phosphorylates PKD2 at Ser²⁴⁴. Phosphorylation of PKD2 leads to its nuclear accumulation and efficient phosphorylation of nuclear PKD2 substrates in human gastric cancer cells.¹ CKI ϵ can phosphorylate topoisomerase (topo) II α at Ser¹¹⁰⁶ and this regulates the enzyme activity and sensitivity to topo II-targeted drugs.²

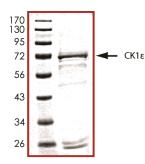
Full length recombinant human CK1ɛ was expressed by baculovirus in *Sf9* insect cells using an N-terminal GST tag. The gene accession number is NM_001894. Recombinant protein stored in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM glutathione, 0.1 mM EDTA, 0.25 mM DTT, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ~72 kDa

Purity: 70-95% (SDS-PAGE, see Figure 1)

Specific Activity: 39-53 nmole/min/mg (see Figure 2)

Precautions and Disclaimer


This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

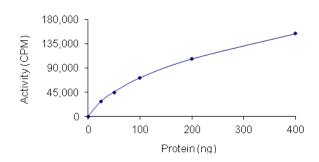

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1. SDS-PAGE Gel of Typical Lot

70–95% (densitometry)

Figure 2. Specific Activity of Typical Lot 39–53 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 $ng/\mu l$ BSA and 5% glycerol solution.

Kinase Solution – Dilute the active CK1 ϵ (0.1 µg/µl) with Kinase Dilution Buffer to the desired concentration. <u>Note</u>: The specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active CK1 ϵ kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C.

 γ -³³P-ATP Assay Cocktail (250 μ M) – Combine 5.75 ml of Kinase Assay Buffer, 150 μ l of 10 mM ATP Stock Solution, 100 μ l of γ -³³P-ATP (1 mCi/100 μ l). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Casein, Dephosphorylated, a protein substrate, was diluted in distilled water to a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³³P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

- 1. Thaw the active CK1 ϵ , Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -³³P-ATP Assay Cocktail may be thawed at room temperature.
- 2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μl:
 - 10 µl of Kinase Solution
 - 5 µl of Substrate Solution
 - 5μ l of cold water (4 °C)
- Set up a blank control as outlined in step 2, substituting 5 μl of cold water (4 °C) for the Substrate Solution.
- 4. Initiate each reaction with the addition of 5 μ l of the γ -³³P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes.
- 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.

- 6. Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
- 7. Set up a radioactive control to measure the total γ^{-33} P-ATP counts introduced into the reaction. Spot 5 µl of the γ^{-33} P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
- 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

SR = <u>cpm of 5 μ l of γ -³³P-ATP Assay Cocktail nmole of ATP</u>

cpm – value from control (step 7) nmole – 1.25 nmole (5 μ l of 250 μ M ATP Assay Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\frac{\Delta \text{cpm} \times (25/20)}{\text{SR} \times \text{E} \times \text{T}}$$

SR = specific radioactivity of the ATP (cpm/nmole ATP) \triangle cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume

- 25 = 101ai reaction volu
- 20 = spot volume
- T = reaction time (minutes)
- E = amount of enzyme (mg)

References

- von Blume, J. et al., Phosphorylation at Ser²⁴⁴ by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J., **26(22)**, 4619-33 (2007).
- 2. Grozav, A.G. et al., Casein kinase I δ/ϵ phosphorylates topoisomerase II α at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res., **37(2)**, 382-92 (2009).

PRECISIO is a registered trademark of Sigma-Aldrich Co. LLC.

RC,MAM 10/11-1

©2011 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA-ALDRICH is a trademark of Sigma-Aldrich Co. LLC, registered in the US and other countries. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma-Aldrich website at www.sigmaaldrich.com and/or on the reverse side of the invoice or packing slip.