CHEMISCREEN ${ }^{\text {TM }}$ MEMBRANE PREPARATION RECOMBINANT HUMAN $\alpha_{1 D}$ ADRENERGIC RECEPTOR with N -terminal truncation

CATALOG NUMBER:

LOT NUMBER:
BACKGROUND:

APPLICATIONS:

HTS216M

RI08040047

QUANTITY:

VOLUME/CONCENTRATION PER VIAL:

200 units
$1 \mathrm{~mL}, 1 \mathrm{mg} / \mathrm{mL}$

The endogenous catecholamines epinephrine and norepinephrine have profound effects on smooth muscle activity, cardiac function, carbohydrate and fat metabolism, hormone secretion, neurotransmitter release, and central nervous system actions. These activities are mediated by GPCRs belonging to two subfamilies, the α - and β-adrenoceptors (Bylund et al., 1994). The three members of the α_{1} subclass of adrenoceptors, $\alpha_{1 \mathrm{~A}}, \alpha_{1 \mathrm{~B}}$ and $\alpha_{1 \mathrm{D}}$, couple to G_{q}, and promote contraction of vascular and urinary tract smooth muscle, relaxation of intestinal smooth muscle, increased contractile force in the heart, and glycogenolysis and gluconeogenesis in the liver. The different subtypes have overlapping distributions and variably contribute to these effects depending on species and tissue. The $\alpha_{1 D}$ adrenergic receptor mediates smooth muscle contraction in several tissues. In the vasculature, activation of $\alpha_{1 D}$ increases blood pressure (Tanoue et al., 2002; Hosoda et al., 2005). In the urinary tract, $\alpha_{1 D}$ promotes bladder contraction. Antagonists of α_{1} receptors are used to treat bladder outlet obstruction, and this effect is thought to be mediated by $\alpha_{1 D}$ (Chen et al., 2005). The $\alpha_{1 D}$ adrenergic receptors has a relatively long N-terminal extracellular domain, and truncation of this domain has been shown to increase expression of the receptor at the cell surface (Pupo et al., 2003). Millipore's $\alpha_{1 D}$ membrane preparations, which contain a version of $\alpha_{1 D}$ lacking residues 2-79, are crude membrane preparations made from our proprietary stable recombinant cell lines to ensure high-level of GPCR surface expression; thus, they are ideal HTS tools for screening of agonists and antagonists of $\alpha_{1 \mathrm{D}}$. The membrane preparations exhibit a Kd of 0.4 nM for $\left[{ }^{3} \mathrm{H}\right]$-prazosin. With $0.5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$-prazosin, $5 \mu \mathrm{~g} /$ well $\alpha_{1 \mathrm{D}}\left(\Delta^{2-79}\right)$ Membrane Prep typically yields greater than 5 -fold signal-to-background ratio.

Radioligand binding assay

Figure 1. Saturation binding for $\alpha_{1 D} .5 \mu \mathrm{~g} / \mathrm{well} \alpha_{1 D}\left(\Delta^{2-79}\right)$ Membrane Preparation was incubated with increasing amount of ${ }^{3} \mathrm{H}$-labeled prazosin in the absence (total binding, TB) or presence (nonspecific binding, NSB) of 200 -fold excess unlabeled prazosin. Specific bindina (SB) was determined bv subtractina NSB from TB

Figure 2. Competition binding for $\alpha_{1 D}$. $\alpha_{10}\left(\Delta^{2-79}\right)$ Membrane Preparation (5 and $10 \mu \mathrm{~g} / \mathrm{well}$) and wildtype Chem-1 Membrane Preparation ($10 \mu \mathrm{~g} / \mathrm{well}$, Millipore catalog \# HTSOOOMC1) were incubated in a 96 -well plate with $0.5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$-labeled prazosin and increasing concentrations of unlabeled $\mathrm{BMY}-7378$. More than 5 -fold signal:background was obtained
Table 1. Signal:background and specific binding values obtained in a competition binding assay with varying amounts of $\alpha_{1 D}\left(\Delta^{2-79}\right)$ receptor membrane prep.

	$10 \mu \mathrm{~g} / \mathrm{well}$	$5 \mu \mathrm{~g} /$ well
Signal:background	15.4	11.2
Specific binding (cpm)	778.8	670.5

SPECIFICATIONS: 1 unit $=5 \mu \mathrm{~g}$
$\mathrm{B}_{\text {max }}$ for $\left[{ }^{3} \mathrm{H}\right]$-prazosin binding: $4.23 \mathrm{pmol} / \mathrm{mg}$ protein
K_{d} for $\left[{ }^{3} \mathrm{H}\right]$-prazosin binding: $\sim 0.4 \mathrm{nM}$
TRANSFECTION: Truncated human ADRA1D cDNA encoding α_{10} lacking residues 2-79 (based on Accession Number: NM_000678; see CODING SEQUENCE below)

HOST CELLS: Chem-1, an adherent mammalian cell line without any endogenous $\alpha_{1 D}$ expression.

RECOMMENDED ASSAY CONDITIONS: Membranes are mixed with radioactive ligand and unlabeled competitor (see Figures 1 and 2 for concentrations tested) in binding buffer in a nonbinding 96 -well plate, and incubated for 1-2 h. Prior to filtration, an FC 96 -well harvest plate (Millipore cat. \# MAHF C1H) is coated with 0.33% polyethyleneimine for 30 min , then washed with 50 mM HEPES, $\mathrm{pH} 7.4,0.5 \%$ BSA. Binding reaction is transferred to the filter plate, and washed 3 times (1 mL per well per wash) with Wash Buffer. The plate is dried and counted.
Binding buffer: 50 mM Hepes, $\mathrm{pH} 7.4,5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM} \mathrm{CaCl}, 0.2 \% \mathrm{BSA}$, filtered and stored at $4{ }^{\circ} \mathrm{C}$

PRESENTATION:

STORAGE/HANDLING:

REFERENCES:

Radioligand: $\left[{ }^{3} \mathrm{H}\right]$-prazosin. (PerkinElmer NET-823)
Wash Buffer: 50 mM Hepes, $\mathrm{pH} 7.4,500 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ BSA, filtered and stored at $4^{\circ} \mathrm{C}$.
One package contains enough membranes for at least 200 assays (units), where a unit is the amount of membrane that will yield greater than 5 -fold signal:background with ${ }^{3} \mathrm{H}$ labeled prazosin at 0.5 nM

Liquid in packaging buffer: 50 mM Tris pH 7.4, 10\% glycerol and 1% BSA with no preservatives.
Packaging method: Membranes protein were adjusted to the indicated concentration in packaging buffer, rapidly frozen, and stored at $-80^{\circ} \mathrm{C}$.

Store at $-70^{\circ} \mathrm{C}$. Product is stable for at least 6 m onths from the date of receipt when stored as directed. Do not freeze and thaw.

Bylund DB et al. (1994) IV. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 46: 121-136.

Chen Q et al. (2005) Function of the lower urinary tract in mice lacking $\alpha_{1 d}$-adrenoceptor. J. Urol. 174: 370-374.

Horie K et al. (1995) Selectivity of the imidazoline α-adrenoceptor agonists (oxymetazoline and cirazoline) for human cloned α_{1}-adrenoceptor subtypes. Br. J. Pharmacol. 116: 16111618.

Hosoda C et al. (2005) Two α_{1}-adrenergic receptor subtypes regulating the vasopressor response have differential roles in blood pressure regulation. Mol. Pharmacol. 67: 912-922.

Pupo AS et al. (2003) N-terminal truncation of human α_{10}-adrenoceptors increases expression of binding sites but not protein. Eur. J. Pharmacol. 462: 1-8.

Tanoue A et al. (2002) The α_{10}-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J. Clin. Invest. 109: 765-775.

CODING SEQUENCE:

For research use only; not for use as a diagnostic.

[^0][^1]
[^0]: Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

[^1]: ©2008: Millipore Corporation. All rights reserved. No part of these works may be reproduced in any form without permission in writing

