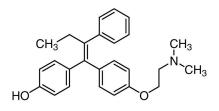
SIGMA-ALDRICH®

sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information


4-Hydroxytamoxifen

Catalog Numbers **H7904 and H6278** Storage Temperature 2–8 °C

CAS RN

68047-06-3 (Z isomer) 68392-35-8 (unspecified isomer) Synonyms: ICI 79280, 4-OHT, *trans*-4-[1-(4-[2-(Dimethylamino)ethoxy]phenyl)-2-phenyl-1-butenyl]phenol

Product Description

Molecular formula: C₂₆H₂₉NO₂ Molecular weight: 387.51

Method of preparation: Synthetic, methods of synthesis have been reported.¹⁻³ Catalog **H7904**: \geq 98% Z isomer Catalog **H6278**: \geq 70% Z isomer

4-Hydroxytamoxifen (4-OHT) is a metabolite of the antiestrogen, tamoxifen, in humans and other mammals. Both the Z (*trans*) and E (*cis*) 4-OHT isomers are antiestrogens in the immature rat. Based on studies of the structure-function relationships of fixed ring systems, it was found that the *trans* isomer is a potent antiestrogen and the *cis* isomer is a relatively weak (100× less) antiestrogen in T47D breast cancer cells *in vitro*.^{4,5}

4-OHT has a higher affinity than tamoxifen and its other metabolites for binding to estrogen receptors and therefore, has 50 to 100-fold greater potency of inhibiting cell multiplication in normal human breast cells⁶ as well as in breast cancer cell lines in culture.^{7,8}
4-OHT was effective in inhibiting growth in these cells in the absence of estrogen when cell proliferation was stimulated by insulin or epidermal growth factor.⁸

4-OHT and tamoxifen were reported to be intramembranous inhibitors of lipid peroxidation and to exhibit peroxyl radical scavenging activity.⁹ A concentration of 25 μ M 4-OHT almost completely prevented the oxidation of *cis*-parinaric acid.⁹ 4-OHT is a better inhibitor of microsomal lipid peroxidation and of liposomal peroxidation than tamoxifen, 3-hydroxy-tamoxifen, or 17 β -estradiol.¹⁰

Tamoxifen and 4-hydroxytamoxifen were found to induce depolarization of the mitochondrial membrane potential ($\Delta\Psi$) and uncouple the mitochondrial respiration, depressing the oxidative phosphorylation efficiency in rat liver mitochondria. Both drugs caused a decrease in mitochondrial ATP level.¹¹ In addition 4-OHT was found to protect against oxidative stress in brain mitochondria.¹²

Tamoxifen and 4-hydroxytamoxifen markedly induce cytochrome P450 3A4, a drug-metabolizing enzyme of central importance, in primary cultures of human hepatocytes.¹³ 4-OHT, tamoxifen, and other metabolites in biological systems have been analyzed by HPLC and GC-mass spectrometry.^{14,15}

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

Soluble in ethanol (20 mg/ml, with heating) and in methanol (10 mg/ml) producing clear faint yellow solutions. Solutions should be stored protected from light at -20 °C.

4-OHT undergoes a *cis-trans* (E-Z) interconversion process favored by solvents of low dielectric constants when exposed to light and when incubated in culture medium.^{1,16} This isomerization occurs in all common laboratory solvents, but can be prevented by storage of the compound in tetrahydrofuran containing ~0.025% butylated hydroxytoluene (BHT) at ~25 °C in the dark. These solutions should remain active for ~6 months with <5% loss in isomeric purity.¹

Storage/Stability

Store desiccated and protected from light at 2–8 °C. Under these conditions the product remains active for 3 years.

References

- Robertson, D.W., and Katzenellenbogen, J.A., Synthesis of the (E) and (Z) isomers of the antiestrogen tamoxifen and its metabolite, hydroxytamoxifen, in tritium-labeled form. J. Org. Chem., 47, 2387-93 (1982).
- 2. McCague, R., J. Chem. Research, (S) 58, (1986).
- Kupfer, D. et al., Induction of tamoxifen-4hydroxylation by 2,3,7,8-tetrachlorodibenzo-*p*dioxin (TCDD), β-naphthoflavone (β-NF), and phenobarbital (PB) in avian liver: identification of P450 TCDDAA as catalyst of 4-hydroxylation induced by TCDD and β-NF. Cancer Res., **54**, 3140-44 (1994).
- Murphy, C.S. et al., Structure-function relationships of hydroxylated metabolites of tamoxifen that control the proliferation of estrogen-responsive T47D breast cancer cells *in vitro*. Mol. Pharmacol., 38, 737-43 (1990).
- Furr, B.J.A., and Jordan, V.C., The pharmacology and clinical uses of tamoxifen. Pharmacol. Ther., 25, 127-205 (1984).
- Malet, C. et al., Tamoxifen and hydroxytamoxifen isomers versus estradiol effects on normal human breast cells in culture. Cancer Res., 48, 7193-99 (1988).
- Coezy, E. et al., Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res., 42, 317-23 (1982).

- Vignon, F. et al., Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochem. Biophys. Res. Commun., **146**, 1502-8 (1987).
- Custodio, J.B. et al., Tamoxifen and hydroxytamoxifen as intramembraneous inhibitors of lipid peroxidation. Evidence for peroxyl radical scavenging activity. Biochemical Pharmacol., 47, 1989-98 (1994).
- Wiseman, H., Tamoxifen and estrogens as membrane antioxidants: comparison with cholesterol. Methods Enzymol., **234**, 590-602 (1994).
- Cardoso, C.M. et al., Comparison of the changes in adenine nucleotides of rat liver mitochondria induced by tamoxifen and 4-hydroxytamoxifen. Toxicol. In Vitro, **17**, 663-70 (2003).
- Moreira, P.I. et al., Hydroxytamoxifen protects against oxidative stress in brain mitochondria. Biochem. Pharmacol., 68, 195-204 (2004).
- Desai, P.B. et al., Induction of cytochrome P450 3A4 in primary human hepatocytes and activation of the human pregnane X receptor by tamoxifen and 4-hydroxytamoxifen. Drug Metab. Dispos., **30**, 608-12 (2002).
- Berthou, F., and Dreano, Y., High-performance liquid chromatographic analysis of tamoxifen, toremifene and their major human metabolites. J. Chromatogr., **616**, 117-27 (1993).
- Murphy, C. et al., Analysis of tamoxifen and its metabolites in human plasma by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM). J. Steroid Biochem., 26, 547-55 (1987).
- Manns, J.E. et al., Analytical Proceedings, **30**, 161 (1993).

EM,NDH,PHC,MAM 12/11-1

©2011 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA-ALDRICH is a trademark of Sigma-Aldrich Co. LLC, registered in the US and other countries. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma-Aldrich website at www.sigmaaldrich.com and/or on the reverse side of the invoice or packing slip.