3050 Spruce Street, Saint Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

β-Glucosidase from almonds

Product Number **G0395** Storage Temperature 2-8 °C

Product Description

Enzyme Commission (EC) Number: 3.2.1.21

CAS Number: 9001-22-3

Synonyms: B-D-Glucoside glucohydrolase

Molecular Weight: 135 kDa

Extinction Coefficient: E^{1%} = 7.06 (280 nm)¹

pl: 7.3¹

β-Glucosidase from almonds is a homodimer consisting of 2 equal subunits of 65 kDa and is a glycoprotein. ¹ The enzyme catalyzes the following reaction:

 β -D-Glucoside + $H_2O \rightarrow \beta$ -D-Glucose + Alcohol

In addition to β -D-glucoside, both β -D-galactosides and β -fucosides can also be hydrolyzed. Reported K_M values are 6.0 mM for o-nitrophenyl β -D-glucoside and 1.8 mM for p-nitrophenyl β -D-fucoside. The enzyme does not require an activator, but is inhibited by gluconolactone, fuconolactone, castanospermine, 1-deoxynojirimycin, 1-azafagomine and its analogues, erythritol, and polyols. 3,4,5

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

The enzyme is soluble in water (1 mg/ml).

References

- Grover, A. K., et al., Studies on almond emulsin beta-D-glucosidase. I. Isolation and characterization of a bifunctional isozyme. Biochim. Biophys. Acta, 482(1), 98-108 (1977).
- Enzyme Handbook, vol. II, Barman, T. E., Springer-Verlag (New York, NY: 1969), EC 3.2.1.21, pp. 578-579.
- Lohse, A., et al., Investigation of the slow inhibition of almond beta-glucosidase and yeast isomaltase by 1-azasugar inhibitors: evidence for the 'direct binding' model. Biochem. J., 349(pt. 1), 211-215 (2000).
- 4. Saul, R., et al., Castanospermine, a tetrahydroxylated alkaloid that inhibits beta-glucosidase and beta-glucocerebrosidase. Arch. Biochem. Biophys., **221(2)**, 593-597 (1983).
- 5. Kelemen, M. V., and Whelan, W. J., Inhibition of glucosidases and galactosidases by polyols. Arch. Biochem. Biophys., **117(2)**, 423-428 (1966).

TMG/RXR 11/08