

Product Information

$$Ca^{2^{+}} \left[\begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ CH_{3} \\$$

15180 hemi-Calcium bis[4-(1,1,3,3-tetramethylbutyl)phenyl] phosphate

(Bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate Calcium salt) Selectophore®, function tested

Electrochemical Transduction

Ion-Selective Electrodes

Application 1 and Sensor Type¹

Assay of Ca²⁺ activity with solvent polymeric membrane electrodes based on the liquid ion-exchanger Bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate Calcium salt.

Recommended Membrane Composition

7.00 wt% Bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate Calcium salt (15180)

29.86 wt% Poly(vinyl chloride) high molecular weight (81392)

63.14 wt% Di-n-octylphenylphosphonate (12584)

Recommended Cell Assembly

Reference | | sample solution | | ion-selective electrode | 0.1 M CaCl₂ | AqCl, Aq

Electrode Characteristics and Function

Selectivity coefficients $\log K_{Ca,M}^{Pot}$ as obtained by the separate solution method in (0.1 M solutions of the chlorides).

 $\begin{array}{ll} \log K^{Pot}_{Ca,Na} & -4.4 \\ \log K^{Pot}_{Ca,K} & -4.5 \\ \log K^{Pot}_{Ca,Mq} & -4.9 \end{array}$

Membrane resistance:

Slope of linear regression: 30.5 at 25° C (10^{-5} to 10^{-0} Ca²⁺)

3 MΩ

Detection limit: $3.2 \cdot 10^{-6}$ M Ca²⁺ pH range for 10^{-3} M CaCl₂: 4.8 to 8.8 Response time: <10 s 3 months

M

Application 2 and Sensor Type²

Assay of Ca²⁺ activity with solvent polymeric membrane electrodes based on the liquid ion-exchanger Bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate Calcium salt.

Recommended Membrane Composition

```
0.10 wt% Bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate Calcium salt (15180) 33.43 wt% Poly(vinyl chloride) high molecular weight (81392) 66.43 wt% Bis(2-ethylhexyl)sebacate (84818)
```

Recommended Cell Assembly

Reference | sample solution | ion-selective electrode | 0.1 M CaCl₂ | AgCl, Ag

Electrode Characteristics and Function

Selectivity coefficients $\log K_{Ca,M}^{Pot}$ as obtained by the separate solution method in (0.1 M solutions of the chlorides).

$\log K_{Ca,NH_4}^{Pot}$	-3.3	$\log K_{Ca,H}^{Pot}$	-2.4
$\log K_{Ca,Li}^{Pot}$	-4.1	$\log K_{Ca,Mg}^{Pot}$	-6.2
$\log K_{Ca,Na}^{Pot}$	-4.0	$\log K_{Ca,Ba}^{Pot}$	-3.0
$\log K_{car}^{Pot}$	-3.0		

Slope of linear regression: 31.9 ± 2.3 mV (10^{-4} to 10^{-1} CaCl₂)

Membrane resistance: $9.9\pm1.0 \text{ M}\Omega$

² Carrier mechanism of acidic ionophores in solvent polymeric membrane ion-selective electrodes. U. Schaller, E. Bakker, E. Pretsch, Anal. Chem. 67, 3123 (1995).

The role of polymeric materials in the fabrication of ion-selective electrodes and biosensors. G.J. Moody, Polym. Mat. Sci. Eng. 64, 362, (1991) and ref. cited therein.