

SEROTONERGIC LIGAND-SET™

Product Number **L6662** Storage Temperature -20°C

Product Description

The Serotonergic LIGAND-SET[™] is a set of 80 small organic ligands which are ligands for Serotonin receptors. These ligands are arrayed in a standard 96-well plate format; each well has a capacity of 1 ml.

This set can be used for screening new drug targets, for guiding secondary screens of larger, more diverse libraries and for standardizing and validating new screening assays.

Serotonin receptors are widely distributed throughout the mammalian body. Serotonin is synthesized from Ltryptophan in enterochromaffin cells of the gastrointestinal tracts as well as in serotonergic neurons. It serves as a major neurotransmitter in the CNS.

In the periphery, the primary source of serotonin are blood platelets which sequester the monoamine via an active transport mechanism and store it as a serotonin:ATP complex. As a consequence, serotonin is released when platelets aggregate at a site of vascular injury where its primary function appears to be to promote hemostasis. Serotonin is also released from enterochromaffin cells following exposure to radiation or cancer chemotherapeutics such as cisplatin. The ensuing activation of $5-HT_3$ receptors on vagal afferents in the gut wall and/or within the area postrema promotes nausea and vomiting.

Currently, thirteen distinct human subtypes of serotonin receptors are recogized on the basis of structural, transductional and pharmacological characteristics. These subtypes are segregated into seven subclasses $(5-HT_1 - 5-HT_7)$, although in some cases only a gene encoding a putative serotonin receptor has been identified. These gene products are ascribed a lower case appellation e.g. 5-ht_{1E} or 5-ht_{1E} and are promoted to upper case only when unambiguous evidence that the receptor exists as an endogenous, physiologicallyimportant entity has been obtained. Further structural and operational diversity is introduced by the existence of receptor isoforms. To date, two isoforms of the human 5-HT₄ receptor and three isoforms of the human 5-HT₇ receptor are known to be produced by alternative splicing of the receptor mRNA. Additionally, up to seven isoforms of the 5-HT_{2C} receptor, varying in the

ProductInformation

amino acid composition of the second intracellular loop, have recently been shown to be produced by editing the receptor pre-mRNA.

Components/Reagents

The Serotonergic LIGAND-SET[™] contains 2 mg of each ligand per well. Stock solutions can be readily prepared by adding 1 ml of DMSO to each well. The set also comes with a diskette containing a structure database, or SD file, and a Microsoft Excel file containing the catalog number, name, rack position and pharmacological characteristics of each ligand. The following is a listing of all the ligands included:

r	
149853	TFMPP hydrochloride
A-164	Alaproclate hydrochloride
B-134	BMY 7378 dihydrochloride
B-173	BRL 54443 maleate
B-175	BW723C86
B7148	Buspirone hydrochloride
B9929	BRL 15572
C-106	CGS-12066A maleate
C-117	5-Carboxamidotryptamine maleate
C-144	1-(m-Chlorophenyl)-biguanide hydrochloride
C5584	1-(3-Chlorophenyl)piperazine dihydrochloride
C6022	Cyproheptadine hydrochloride
C6506	p-Chlorophenylalanine
C7291	Clomipramine hydrochloride
D0136	5,7-Dihydroxytryptamine creatinine sulfate
D0411	WB-4101 hydrochloride
D-101	(±)-DOI hydrochloride
D-132	N,N-Dipropyl-5-carboxamidotryptamine maleate

F-132	Fluoxetine hydrochloride	
F-133	Norfluoxetine hydrochloride	
H-133	Trimethylserotonin iodide	
H8876	5-Hydroxyindolacetic acid	
H9523	Serotonin (5-hydroxytryptamine) hydrochloride	
H9772	5-Hydroxy-L-tryptophan	
H9876	Hydroxylamine hydrochloride	
17379	Imipramine hydrochloride	
17627	Iproniazid phosphate	
L-107	LY-53,857 maleate	
M6628	5-Methoxytryptamine hydrochloride	
L-129	L-694,247	
M-003	R(-)-Deprenyl hydrochloride	
M0763	Metoclopramide hydrochloride	
291552	6-Methoxy-1,2,3,4-tetrahydro-9H-pyrido[3,4b] indole	
M-109	2-Methyl-5-hydroxytryptamine maleate	
M-110	alpha-Methyl-5-hydroxytryptamine maleate	
M-137	Methysergide maleate	
M-149	Methiothepin mesylate	
M-153	Mesulergine hydrochloride	
M-204	p-MPPI hydrochloride	
M-226	p-MPPF dihydrochloride	
M2381	5-Methoxy DMT oxalate	
M2525	Mianserin hydrochloride	
M3668	Metergoline	
M3778	Clorgyline hydrochloride	
N1392	Nialamide	
N-178	5-(Nonyloxy)-tryptamine hydrogen oxalate	
N9765	NAN-190 hydrobromide	

P-120	1-Phenylbiguanide
P-126	Pirenperone
P-150	Pindobind-5HT1A
P8013	Pargyline hydrochloride
P8511	Tranylcypromine hydrochloride
Q1004	Quipazine dimaleate
Q-107	Quipazine, N-methyl-, dimaleate
Q-109	Quipazine, 6-nitro-, maleate
Q3251	Quinacrine dihydrochloride
R-103	Ritanserin
R-106	Ro 16-6491 hydrochloride
R-107	Ro 41-1049 hydrochloride MAO-A inhibitor
R-118	Risperidone
R-140	Ro 04-6790
S-002	(±)-8-Hydroxy-DPAT hydrobromide
S-003	1-(1-Naphthyl)piperazine hydrochloride
S-006	Ketanserin tartrate
S-008	1-(2-Methoxyphenyl)piperazine hydrochloride
S-009	РАРР
S-103	Spiroxatrine
S-174	SDZ-205,557 hydrochloride
S-180	SB 206553 hydrochloride
S-201	SB 224089 hydrochloride
S2201	Semicarbazide hydrochloride
T0254	L-Tryptophan
T-104	3-Tropanyl-indole-3-carboxylate hydrochloride
T6154	Trazodone hydrochloride
T8160	3-Tropanyl-3,5-dichlorobenzoate
T9628	Tryptamine hydrochloride
L	

U-108	S(-)-UH-301 hydrochloride
U-109	R(+)-UH-301 hydrochloride
W-108	WAY-100635 maleate
Z-101	Zimelidine dihydrochloride

Preparation Instructions

To create a new database in ISIS™/BASE :

- Open ISIS™/BASE.
- Choose <u>File>New database</u>.
- Enter **Serotonergic** or a preferred name in the File name field.
- Click Save.
- The "Create Database" window will now be open.
- Enter Catnum for the Field name.
- Choose Variable text from the drop down window of the Type field.
- Click Add.
- Repeat the above steps for the following:

<u>Field name</u>	<u>Type</u>
Name	Variable text
Position	Variable text
Action	Variable text
Class	Variable text
Selectivity	Variable text
SecName	Variable text
Description	Variable text

- Enter Structure for the Field name.
- Choose **Structure** from the drop down window of the Type field.
- Enter *Structure for the External name.
- Click Add.
- Click Save.

The main ISIS™/BASE window will now be open. <u>To create the Form:</u>

- Click on the "Draw a box" button (second button down on the left of the screen).
- Move the mouse to the bottom left hand corner and draw a box, ½ inch high, the length of the screen by clicking on the left mouse button and dragging the mouse across the screen. (see figure below)
- Above this box, draw another ½ inch high box the length of the screen. (see figure below)

- Above this box, draw a third ½ inch high box the length of the screen. (see figure below)
- Above these long boxes draw 3 ½ inch high x 3 inch wide boxes. (see figure below)
- Above these 3 boxes, draw another three the same size. (see figure below)
- Draw a final box to fit the remaining space of the screen above these boxes. (see figure below)

Double click on the top box. This will open the Box properties window.

- Click on Structure.
 Click OK.
 Click Internet State Structure and Structure and State St
 - Repeat the same steps, clicking on the appropriate field name for the appropriate box:

<u>Box</u>	Field name
First small box	ID
Second small box	Catnum
Third small box	Position
Fourth small box	Action
Fifth small box	Class
Sixth small box	Selectivity
First long box	Name
Second long box	SecName
Bottom long box	Description
Change Files Save	form

- Choose File>Save form.
- Enter Serotonergic or preferred name.
 - Click OK.

Importing an SD file:

- Click Update.
- Choose File>Import>SD File. NOTE: For MAC users, you must hold down the option key while choosing File>Import>SD File. If you do not, the Serotonergic.sdf will not be visible in the import window.
- Enter **Serotonergic.sdf** (Located on the floppy diskette provided with the plate).
- Click **Open**.
 The Import SD File window will now be open.
- Click on Add a new record including structure, on both sides of the table.
- Click OK.

The database is now ready to use.

Storage/Stability

Store plate -20°C with cap strips firmly in place. Plate cover should only be removed when plate is in use to prevent loss of caps strips.

References

- Eglen, R.M., et al., "The 5-HT₇ receptor orphan found." *Trend Pharmacol. Sci.* 18, 104-107 (1997).
- Hoyer, D. and Martin, G.R., "5-HT receptor classification and nomenclature: Towards a harmonization with the human genome." *Neuropharmacology* 36, 419-428 (1997).
- Sadou, F. and Hen, R., "5-HT receptor subtypes: Molecular and functional diversity." *Med. Chem. Res.* 4, 16-84 (1994).

SMS 8/00

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.