

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

Microsomes, pooled from female mouse liver (CD-1)

Product Number **M 9566** Storage Temperature –70 °C

Product Description

Liver microsomes are subcellular particles derived from the endoplasmic reticulum of hepatic cells. These microsomes are a rich source of drug metabolizing enzymes, including cytochrome P450. Microsome pools from various sources are useful in the study of xenobiotic metabolism and drug interactions.

This product contains a mixture of liver microsomes pooled from different female mice (CD-1) of 11 weeks of age.

The protein content is a minimum of 20 mg/ml in 250 mM sucrose and is specifically reported on the certificate of analysis (C of A). Total cytochrome P450, oxidoreductase, cytochrome b₅, CYP1A, CYP2E, CYP3A, and CYP4A activities are also reported on the lot specific C of A.

Precautions and Disclaimer

This product is for laboratory research use only. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

- 1. Quickly thaw at 37 °C using a water bath. Keep on ice until ready to use.
- 2. If not using the entire contents, aliquot to minimize freeze-thaw cycles.
- 3. Store aliquots at -70 °C.

Storage/Stability

The product is shipped on dry ice and it is recommended to store the product at $-70\,^{\circ}$ C. The product, as supplied, is stable for at least 2 years if stored correctly.

Product Profile

Total cytochrome P450 and cytochrome b₅ are assayed by the standard method of Omura and Sato.¹

Enzyme activities on the product are determined as follows:

Oxidoreductase Activity:

Determined as cytochrome c reductase activity. The reaction is initiated by the addition of 0.1 mg/ml of protein to 1.0 ml of reaction mixture containing 1.3 mM NADP, 3.3 mM glucose 6-phosphate, 0.4 U/ml glucose 6-phosphate dehydrogenase, 3.3 mM MgCl₂, and 0.95 mg/ml cytochrome c in 0.25 M potassium phosphate buffer, pH 7.4, at 37 °C. The absorbance change at 550 nm is recorded as a function of time. An extinction coefficient for reduced (ferrous) cytochrome c at 550 nm of 19.6 mM⁻¹ cm⁻¹ is used to calculate the reductase activity. One unit will reduce 1 nanomole of cytochrome c per minute at pH 7.4 at 37 °C.

CYP1A Isozyme Activity:

Determined as 7-ethoxyresorufin O-deethylase activity. Incubations are conducted at 0.5 mg/ml of protein with 1.3 mM NADP, 3.3 mM glucose 6-phosphate, 0.4 U/ml glucose 6-phosphate dehydrogenase, and 3.3 mM MgCl $_2$ in 0.1 M potassium phosphate buffer, pH 7.4, for 2 minutes. One unit will produce 1 picomole of resorufin per minute at pH 7.4 at 37 °C.

CYP2E Isozyme Activity:

Determined as p-nitrophenol hydroxylase activity. Incubations are conducted at 0.2 mg/ml of protein with 1.3 mM NADP, 3.3 mM glucose 6-phosphate, 0.4 U/ml glucose 6-phosphate dehydrogenase, and 3.3 mM MgCl $_2$ in 0.1 M potassium phosphate buffer, pH 7.4, for 30 minutes. One unit will produce 1 picomole of 4-nitrocatechol per minute at pH 7.4 at 37 °C.

CYP3A Isozyme Activity:

Determined as testosterone 6β-hydroxylase activity. Incubations are conducted at 0.2 mg/ml of protein with 1.3 mM NADP, 3.3 mM glucose 6-phosphate, 0.4 U/ml glucose 6-phosphate dehydrogenase, and 3.3 mM MgCl₂ in 0.1 M potassium phosphate buffer, pH 7.4, for 20 minutes. One unit will produce 1 picomole of 6β-hydroxytestosterone per minute at pH 7.4 at 37 °C.

<u>CYP4A Isozyme Activity</u>: Determined as [¹⁴C] lauric acid hydroxylase activity. Incubations are conducted at 0.5 mg/ml of protein with 1.3 mM NADP, 3.3 mM glucose 6-phosphate, 0.4 U/ml glucose 6-phosphate dehydrogenase, and 3.3 mM MgCl₂ in 0.1 M Tris buffer, pH 7.5, for 10 minutes. One unit will produce 1 picomole of 12-hydroxylauric acid per minute at pH 7.5 at 37 °C.

References

1. Omura, T., and Sato, R., J. Biol. Chem., 239, 2379,

JX/EWK/MAM 4/03