

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Anti-MAP Kinase 2 (ERK-2)

produced in rabbit, IgG fraction of antiserum

Catalog Number M7556

Product Description

Anti-MAP Kinase 2 (MAPK2 or Extracellular Regulated Protein Kinase, ERK-2) is produced in rabbit using purified recombinant mouse MAP kinase 2 as immunogen. This antibody does not cross react with MAP kinase 1 (ERK-1) or interfere with kinase activity. The antibody is purified using protein G chromatography.

Anti-MAP Kinase 2 recognizes the 42 kDa MAP kinase 2 encoded by the mapk gene. It reacts with mouse, human and rat MAPK2. Anti-MAP Kinase 2 may be used for the detection of MAPK2 by immunoblotting cell lysates of human A431 carcinoma cells, mouse 3T3 fibroblasts and rat L6 skeletal fibroblasts. Anti-MAP Kinase 2 may also be used for immunoprecipitation of MAPK2 from a mouse 3T3 fibroblast cell lysate.

MAP Kinase 2 or ERK-2 is a part of complicated signal transduction cascade. This cascade can be initiated by growth factors binding to receptor tyrosine kinases, by the activation of low molecular with GTP-binding proteins or by G protein-coupled receptors. The initiation of this pathway has been linked to changes in several cellular pathways, including proliferation, differentiation, cellular morphology and oncogenesis. The pathway begins with the activation of a MAP kinase kinase kinase (such as Raf and MEKK) that subsequently activates a MAP kinase kinase (such as MEK1 or MEK2). MEK then phosphorylates both tyrosine and threonine residues resulting in activation of a MAP kinase^{1,2}, such as ERK 1(p44_{mapk})³ or ERK 2(p42_{mapk})⁴. Phosphorylation at both the tyrosine and threonine residues is necessary for full enzymatic activity⁵. Following activation, MAP kinase phosphorylates several nuclear targets, including transcription factors. In addition, MAP kinase phosphorylates membrane proteins and cytoskeletal proteins^{6,7}. Termination of MAP kinase signaling appears to be mediated by MAP kinase phosphatase. MKP-1, a dual specificity Thr/Tyr phosphatase which

dephosphorylates and inactivates MAP kinase⁸. MAP kinases are widely expressed in the central nervous system, thymus, spleen, heart, lung and kidney, and is expressed in high levels in PC-12 cells and in fibroblasts^{2,6}. Antibodies that react specifically with MAP kinase may be used to study the specific activation requirements, differential tissue expression and intracellular localization of MAP kinase in normal and neoplastic tissue.

Reagent

Supplied as a solution in 0.02M phosphate buffer, pH 7.6, 0.25M NaCl, and \leq 0.1% sodium azide.

Protein Concentration: ~1 mg/ml

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

Store at $-20~^{\circ}$ C. Aliquot to avoid repeated freezing and thawing. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use.

Product Profile

 $\underline{Immunoblotting} \hbox{: a working concentration of } 0.5\text{--}2~\mu\text{g/ml} \\ \hbox{is recommended.}$

 $\frac{Immunoprecipitation}{MAPK2 \ from \ 0.5-1 \ mg \ of \ a \ mouse \ 3T3 \ fibroblast \ lysate.}$

Note: In order to obtain best results and assay sensitivity in different techniques and preparations we recommend determining optimal working dilutions by titration test.

References

- Ahn, N.G., et al., Curr. Opin. Cell Biol., 4, 992 (1992).
- 2. Seger, R., et al., J. Biol. Chem., 267, 14337 (1992).
- 3. Boulton, T.G, et al., Science, 249, 64 (1990).
- Her, J-H., et al., *Nucleic Acids Res.*, 19, 3743 (1991).
- 5. Anderson, N.G., et al., Nature, 343, 651 (1990).
- Ray, L.B. and Sturgill., T.W., Proc. Natl. Acad. Sci. USA, 84, 1502 (1987).
- 7. Boulton, T.G., et al., Cell, 65, 663 (1991).
- 8. Sun, H., et al., Cell, 75, 487 (1993).

SG,PHC 05/14-1