Application Note

Cannabis Potency Testing: Method Development and Cost Considerations

Overview of key method optimization parameters and a featured low-cost methanol method.

Hillel Brandes, Ph.D. Analytical Technology Specialist, MilliporeSigma

Introduction

Cannabinoid testing is conducted for a variety of reasons, but always to identify and quantitate various cannabinoids in a source tissue or sample, such as tinctures, essential oils, or foods. This application note discusses common parameters of potency testing that can be problematic to method robustness, and presents a method that addresses these while offering costsavings over most HPLC methods currently employed in testing laboratories.

Method Requirements

Most current cannabinoid analysis methods for routine testing are by reversed-phase chromatography(RPC) with UV detection, and as such require chromatographic separation of the analytes. As the number of analytes needed to be identified and quantified increases, greater selectivity is required of a method. This often involves fine tuning of method parameters that can include column chemistry, pH, buffer strength, temperature, and composition of organic modifier.

Mobile Phase pH

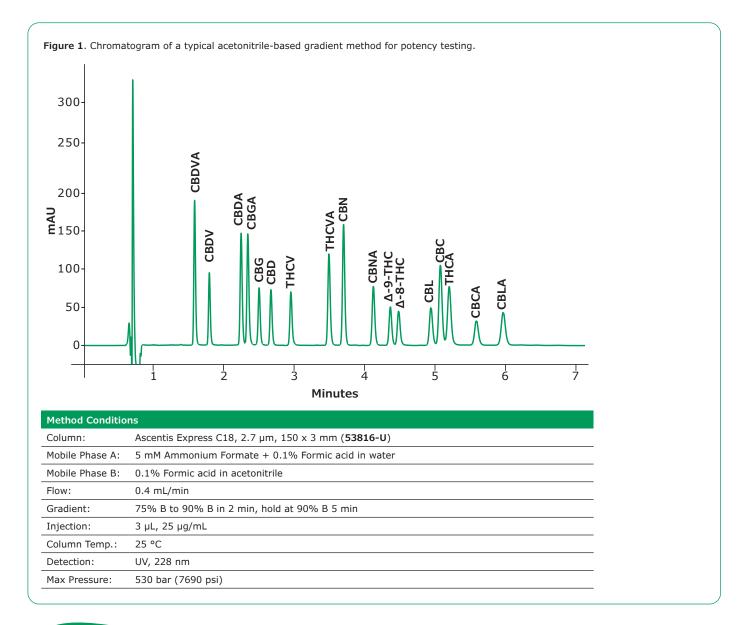
At least two parameters that can be problematic are pH and temperature. Fundamental good practice for RPC, dictates that the pH of a mobile phase should be wellremoved from the pKa of the analytes. This is because if the pH is too close to the analyte pKa, there can be large shifts in the retention of the analyte with only a small change in pH. If the mobile phase isn't buffered well, then there can be very significant local pH shifts within the migrating analyte band. Therefore mobile phase pH should be at least 1 pH unit removed from the closest analyte pKa. In the case of cannabinoids, the analyte pKas are generally between pH 3.5 and 4. Unfortunately, this is also the approximate pH of dilute formic acid/ammonium formate mobile phases commonly employed for cannabinoid analysis. This is however, ironic, for "good" reason: that is, it is at this pH that critical pair resolutions are observed, despite efforts at method development to keep the pH substantially lower or higher, in order to better control the state of ionization of the analytes. Nevertheless it remains, that in terms of good RPC practice for development of robust methods, this is clearly not ideal.

Column Temperature

It's not uncommon to see optimized methods that indicate temperatures of 30 °C or less. There's nothing inherently problematic with that if the column oven has an integrated cooling unit. Many HPLC column ovens, especially lower-cost units, are configured only with a heating element. Therefore any attempts to control temperature at or near room temperature are problematic. When temperature control at or near such values are critical for resolution, users will often be frustrated with too much retention variation if the ovens aren't equipped with a cooling unit and thus cannot maintain a constant temperature.

Organic Modifier

Most often, solutions for RPC resolution of multiple cannabinoids employ acetonitrile as the organic modifier. This is simply because it has permitted quicker and easier solutions for resolution of all sample components. However, the one downfall with acetonitrile, compared to the other common RPC modifier methanol, is cost. Acetonitrile can cost 3 times as much or more.



Case Study – Low Cost Methanol Method

Herein we present an alternate method for analysis of up to 17 cannabinoids that has the following attributes:

- Mobile phase pH is adequately removed from the analyte pKas (the pH of mobile phase A is ~2.6).
- A higher column temperature is used that can be readily controlled by lower-cost heating-only column ovens
- The organic modifier is methanol, thus potentially lowering costs considerably
- The associated backpressures are such that the method doesn't require use of a UHPLC.

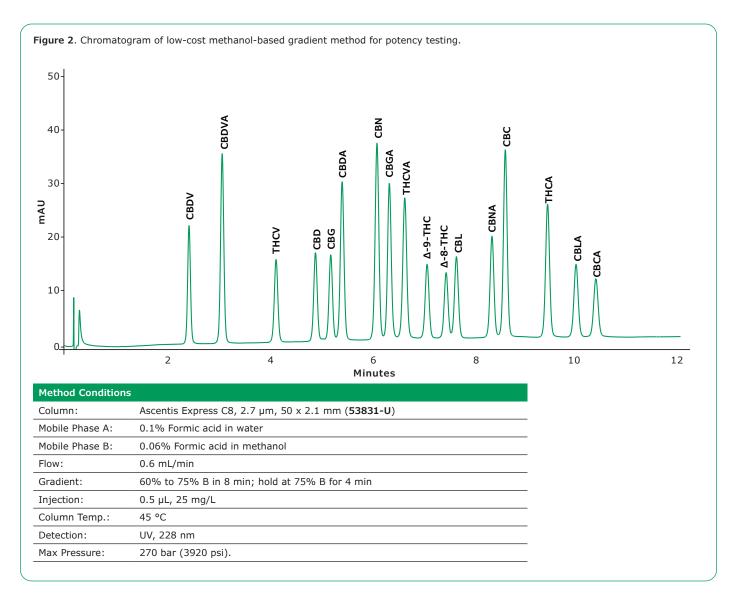


Table 1. Example of Calculations for Solvent Consumption and Cost Per Injection

Method	Organic	mL	¢/mL	¢
Gradient	ACN	6.14	10.25	62.94
Gradient MeOH	MeOH	5.31	3.58	19.01

Discussion

In **Figure 1** you see a common method based on use of acetonitrile as the organic modifier. **Figure 2** is the alternate methanol-based method. While the runtime of the latter is increased 70%, it's still a very reasonable length, under 12 min. Even with the added length, the cost calculations (**Table 1**) of the volume of organic solvent consumed is about 3-fold less. As long as the throughput is sufficient, this represents a cost-savings that can be readily realized. For either method, further gains in resolution can be attained by using the smaller particle 2 µm Ascentis Express columns.

Featured and Related Products

	Product Description	Cat. No.			
	HPLC Columns				
	Ascentis [®] Express C8 column, 2.7 µm, 50 x 2.1 mm I.D.	53831-U			
	Ascentis Express C18, 2.7 µm, 150 x 3 mm I.D.	53816-U			
	Ascentis® Express C8, 2.7 µm guard cartridge 5 mm × 2.1 mm, pkg of 3 ea	53509-U			
	Ascentis® Express C18, 2.7 µm guard cartridge 5 mm × 3 mm, pkg of 3 ea	53504-U			
	Ascentis® Express Guard Cartridge Holder	53500-U			
	Accessories				
	Certified Vial Kit, Low Adsorption (LA), 2 mL, pk of 100 volume 2 mL, amber glass vial (with marking spot), natural PTFE/silicone septa, thread 9 mm	29653-U			
	Certified Reference Materials				
	Cannabinoid Mixture (Acids) 6 Component including CBCA, CBDVA, CBDA, CBGA, THCVA, and THCA-A in 1% DIPEA and 0.05% Ascorbic acid in Acetonitrile, each analyte at 500µg/mL, certified reference material, ampule of 1mL, Cerilliant®	C-218			
	Cannabinoid Mixture (Neutrals) 8 Component including CBG, Cannabinol, CBD, CBDV, (-)-delta8-THC, (-)-delta9-THC, and THCV in Acetonitrile, each analyte at 500µg/mL, certified reference material, ampule of 1mL, Cerilliant®				
	Cannabidivarinic Acid (CBDVA) solution 1.0 mg/mL in acetonitrile, certified reference material, ampule of 1 mL, Cerilliant®	C-152			
	1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®	C-140			
	Cannabidiolic acid (CBDA), 1.0 mg/mL in acetonitrile, ampule of 1 mL, certified reference material, Cerilliant®	C-144			
	Cannabigerolic acid (CBGA), 1.0 mg/mL in acetonitrile, ampule of 1 mL, certified reference material, Cerilliant®	C-142			
	Cannabigerol (CBG), 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®	C-141			
	Cannabidiol solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®	C-045			
	Tetrahydrocannabivarin (THCV), 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®	T-094			
	Tetrahydrocannabivarinic acid (THCVA), 1.0 mg/mL in acetonitrile, certified reference material, ampule of 1 mL, Cerilliant®	T-111			
	Cannabinol (CBN), 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®	C-046			
	Cannabinolic acid (CBNA), 1.0 mg/mL in acetonitrile, certified reference material, ampule of 1 mL, Cerilliant®	C-153			
	Δ 9-tetrahydrocannabinol (Δ 9-THC), 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant [®]	T-005			
	Δ 8-tetrahydrocannabinol (Δ 8-THC), 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant [®]	T-032			
	Cannabicyclol (CBL), 1.0 mg/mL in acetonitrile, certified reference material, ampule of 1 mL, Cerilliant®	C-154			
	Cannabichromene (CBC), 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®	C-143			
	Δ9-tetrahydrocannabinolic acid (THCA), 1.0 mg/mL in acetonitrile, ampule of 1 mL, certified reference material, Cerilliant®	T-093			
	Cannabichromenic acid (CBCA), 1.0 mg/mL in acetonitrile, certified reference material, ampule of 1 mL, Cerilliant®	C-150			
	Cannabicyclolic acid (CBLA), 0.5 mg/mL in acetonitrile, certified reference material, ampule of 1 mL, Cerilliant®	C-171			
	Water, Solvents and Chemicals				
	Methanol, UHPLC grade, Sigma Aldrich	900688			
	Formic acid 98% - 100%, for LC-MS, LiChropur™	5330020050			
	Acetonitrile with 0.1 % (v/v) formic acid for UHPLC, Sigma Aldrich	900686			
	Ammonium formate ≥99.0%, for LC-MS, LiChropur [™]	70221			
	Ultrapure water from Milli-Q [®] system or bottled water	Milli-Q [®] IQ 7005 or 101262			

Merck KGaA Frankfurter Strasse 250

To place an order or receive technical assistance

In Europe, please call Customer Service: France: 0825 045 645 Germany: 069 86798021 Italy: 848 845 645

Spain: 901 516 645 Option 1 Switzerland: 0848 645 645 United Kingdom: 0870 900 4645

For other countries across Europe, please call: +44 (0) 115 943 0840 SigmaAldrich.com

64293 Darmstadt, Germany

MK_AN7665EN Ver. 1.0 35398 04/2021

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved. Merck, the vibrant M, and Supelco are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.