For life science research only. Not for use in diagnostic procedures.

Hexokinase/Glucose-6-Phosphate Dehydrogenase (HK/G6P-DH) from yeast/*Leuconostoc*

Version: 07Content Version: November 2021

ATD Diles and Colorado (Della and Colorado NADD

overproducer; ATP: D-hexose 6-phosphotransferase/D-glucose-6-phosphate: NADP 1-oxidoreductase

Cat. No. 10 127 825 001 15 mg

5 ml

Cat. No. 10 737 275 001 30 mg

10 ml

Store the product at +2 to +8°C.

1.	General Information	3
1.1.	Contents	3
1.2.	Storage and Stability	3
	Storage Conditions (Product)	
1.3.	Application	3
	Product Description	3
2.	How to Use this Product	3
2.1.	Before you Begin	3
	General Considerations	3
	Additional information	3
2.2.	Parameters	4
	Absorbance	
	Activator	
	Hexokinase	
	Glucose-6-Phosphate-Dehydrogenase	
	EC-NumberInhibition	
	Hexokinase	
	Glucose-6-Phosphate-Dehydrogenase	
	Isoelectric Point	
	Hexokinase	
	Glucose-6-Phosphate-DH	4
	Molecular Weight	
	pH Optimum	
	Hexokinase	
	Glucose-6-Phosphate-DehydrogenaseSpecificity	
	Hexokinase	
	Glucose-6-Phosphate Dehydrogenase	
	Stabilizers	
	Hexokinase	
	Glucose-6-Phosphate-Dehydrogenase	6
	Unit Definition	
	Volume Activity	6
3.	Additional Information on this Product	6
3.1.	Test Principle	6
	Preparation	
	Control assay	
	Equilibrium	
	Turnover number G6P-DH	6
4.	Supplementary Information	
4.1.	Conventions	7
4.2.	Changes to previous version	7
4.3.	Trademarks	7
4.4.	License Disclaimer	7
4.5.	Regulatory Disclaimer	
4.6.	Safety Data Sheet	
4.0. 4.7	Contact and Support	

1. General Information

1.1. Contents

Vial / bottle	Label	Function / description	Catalog number	Content
1	Hexokinase/Glucose-6-Phosphate Dehydrogenase (HK/G6P-DH)	Suspension in 3.2 M ammonium sulfate solution,	10 127 825 001	1 vial, 15 mg, 5 ml
		pH approximately 6.	10 737 275 001	1 vial, 30 mg, 10 ml

1.2. Storage and Stability

Storage Conditions (Product)

When stored at +2 to +8°C, the product is stable through the expiry date printed on the label.

Vial / bottle	Label	Storage
1	Hexokinase/Glucose-6-Phosphate Dehydrogenase (HK/G6P-DH)	Store at +2 to +8°C.

1.3. Application

Product Description

Source

Hexokinase: yeast

G6P-DH: Leuconostoc mesenteroides and recombinant in E. coli

2. How to Use this Product

2.1. Before you Begin

General Considerations

Additional information

- The optimal pH for the coupled HK/G6P-DH reactions is pH 7.6 to 7.7. HK/G6P-DH may be used in assays from pH 6.6 (creatine kinase) to pH 9.5 (D-sorbitol).
- Mg²⁺ is required in the HK reaction. For optimal activity, add sufficient Mg²⁺ (usually 2.5 to 4.0 mM) to activate HK, but do not add excess Mg²⁺.
- Do not use high concentrations of phosphate buffer in assays with HK/G6P-DH. Phosphate inhibits G6P-DH; assays in the literature typically use 20 to 69 mM phosphate. Substitution of another buffer, such as triethanolamine for phosphate avoids the problem.
- Trichloroacetic acid (TCA) inhibits HK/G6P-DH.

⚠ Do not use TCA to deproteinize samples to be assayed with these enzymes. Use perchloric acid instead.

2.2. Parameters

Absorbance

Absorbance of the purified G6P-DH enzyme

1.15 (1 mg enzyme/ml, 280.5 nm)

Activator

Hexokinase

- Requires Mg²⁺
- Catecholamines

Glucose-6-Phosphate-Dehydrogenase

HCO₃⁻ ≤0.3 M activates slightly.

EC-Number

EC 2.7.1.1/1.1.1.49

Inhibition

Hexokinase

- Glucose-6- phosphate (G6P) (K_i = 9.1 mM; pH 8.0 at +25°C).
- Lyxose
- Sorbose-1-phosphate
- 6-deoxy-6-fluoro-glucose
- EDTA
- Thiol blocking agents, such as Hg²+ and 4-chloromercuribenzoate.
- Polyphosphates

Glucose-6-Phosphate-Dehydrogenase

- Phosphate (K_i = 50 mM)
- Pyridoxal-5'-phosphate (K_i = 0.004 to 0.006 mM)
- Acetyl-CoA
- CoA
- NADPH is a competitive inhibitor of the NAD-dependent reaction.
- ATP is a competitive inhibitor of the reaction with either NAD or NADP.
- Mg²⁺ reverses inhibition by ATP.

Isoelectric Point

Hexokinase

4.5 to 4.8

Glucose-6-Phosphate-DH

4.6

Molecular Weight

LG6P-DH: 110,000 Da, is a dimer.

pH Optimum

Hexokinase

7.6 to 9.0

Glucose-6-Phosphate-Dehydrogenase

7.0 to 8.5. Maximal activity at 7.8.

Specificity

Hexokinase

Hexokinase phosphorylates substrates with different rates (pH 7.5, +30°C).

i Hexokinase requires Mg^{2+} ($K_m = 2.6 \text{ mM}$) for activity.

Substrate	Relative rate [mM]	K _m value	
D-glucose	0.1	1.0	
D-fructose	0.7	1.8	
D-mannose	0.05	0.8	
D-glucosamine	1.5	0.7	
2-deoxy-D-glucose	0.3	1.0	

Sugars not phosphorylated

- L-arabinose
- D-xylose
- D-lyxose
- L-rhamnose
- D-galactose
- Sucrose
- Lactose
- Maltose
- Trehalose
- Raffinose
- N-acetyl-D-glucosamine

Phosphate donors

The following phosphate donors may be used:

Phosphate donor	Relative reaction rate
ATP*	1.0 (K _m 0.1 mM)
dATP*	0.5
ITP*	0.03
UTP*	0.004
CTP*, GTP*	0.001

The enzyme shows a low rate of XTPase activity toward ATP, ITP, and GTP, which is increased in the presence of a non-phosphorylatable hexose, such as D-xylose.

Glucose-6-Phosphate Dehydrogenase

At pH 7.8, +25°C, G6P-DH from *Leuconostoc* (LG6P-DH) is highly specific for D-glucose-6-phosphate ($K_m = 36 \mu M$, NADP as coenzyme; 64 μM , NAD as coenzyme), but will use either NADP ($K_m = 7.4 \mu M$; relative rate = 1.0) or NAD ($K_m = 115 \mu M$; relative rate = 1.8) as coenzyme.

LG6P-DH does not react with:

- Fructose-6-phosphate
- Fructose-1,6-biphosphate

LG6P-DG will oxidize 2-deoxy-glucose-6-phosphate with NADP, but not with NAD, as coenzyme. There is a slow reaction with D-glucose.

- Glucose-1-phosphate
- Ribose-1-phosphate

Stabilizers

Hexokinase

Thiols

Glucose-6-Phosphate-Dehydrogenase

None

Unit Definition

- One unit HK will phosphorylate 1 µmol of D-glucose in one minute at +25°C and pH 7.6.
- One unit G6P-DH will oxidize 1 µmol of glucose-6-phosphate in one minute at +25°C and pH 7.6.
- The coupled assay produces 1 µmol of NADH per µmol of D-glucose phosphorylated.

Volume Activity

- 340 U Hexokinase/ml at +25°C with glucose and ATP as the substrates.
- 170 U Glucose-6-Phosphate Dehydrogenase/ml at +25°C with glucose-6-phosphate as the substrate.

3. Additional Information on this Product

3.1. Test Principle

Preparation

Prepared by mixing Hexokinase with G6P-DH. Ratio of HK:G6P-DH is approximately 2:1 regrading protein content.

Control assay

Equilibrium

- With Hexokinase, the phosphorylation of glucose to glucose-6-phosphate is greatly favored at +30°C and pH 6.
- With G6P-DH, the oxidation (forward reaction) is strongly favored.

Turnover number G6P-DH

3.2 × 10⁴ mol substrate/mol enzyme/minute with NADP as a coenzyme.

4. Supplementary Information

4.1. Conventions

To make information consistent and easier to read, the following text conventions and symbols are used in this document to highlight important information:

Text convention and symbols		
1 Information Note: Additional information about the current topic or procedure.		
⚠ Important Note: Information critical to the success of the current procedure or use of the product.		
1 2 3 etc.	Stages in a process that usually occur in the order listed.	
1 2 3 etc. Steps in a procedure that must be performed in the order listed.		
* (Asterisk)	The Asterisk denotes a product available from Roche Diagnostics.	

4.2. Changes to previous version

Layout changes. Editorial changes.

4.3. Trademarks

All product names and trademarks are the property of their respective owners.

4.4. License Disclaimer

For patent license limitations for individual products please refer to:

<u>List of biochemical reagent products</u> and select the corresponding product catalog.

4.5. Regulatory Disclaimer

For life science research only. Not for use in diagnostic procedures.

4.6. Safety Data Sheet

Please follow the instructions in the Safety Data Sheet (SDS).

4.7. Contact and Support

To ask questions, solve problems, suggest enhancements or report new applications, please visit our **Online Technical Support Site**.

To call, write, fax, or email us, visit **sigma-aldrich.com**, and select your home country. Country-specific contact information will be displayed

