

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Lectin from *Phaseolus vulgaris* (red kidney bean) Phytohemagglutinin PHA-P

Product Number **L8754** Storage Temperature 2–8 °C

Product Description

PHA-P is a mixture of PHA-E (MW = 128 kDa) and PHA-L (MW = 126 kDa).

Lectins are proteins or glycoproteins of non-immune origin that agglutinate cells and/or precipitate complex carbohydrates. Lectins can bind glycoproteins even in the presence of various detergents. The agglutination activity of these highly specific carbohydrate-binding molecules is usually inhibited by a simple monosaccharide. However, for some lectins, di, tri, and even polysaccharides are required.

Lectin PHA-P is not inhibited easily by monosaccharides, but may be inhibited by oligosaccharides.

Lectins are isolated from a wide variety of natural sources, including seeds, plant roots and bark, fungi, bacteria, seaweed and sponges, mollusks, fish eggs, body fluids of invertebrates and lower vertebrates, and from mammalian cell membranes. The precise physiological role of lectins in nature is still unknown, but they have proved to be very valuable in a wide variety of applications *in vitro*, including:

- 1. blood grouping and erythrocyte polyagglutination studies.
- 2. mitogenic stimulation of lymphocytes.
- 3. lymphocyte subpopulation studies.
- 4. fractionation of cells and other particles.
- 5. histochemical studies of normal and pathological conditions.

Sigma offers a range of lectins suitable for the above applications. Most Sigma lectins are highly purified by affinity chromatography. Some products are offered as purified or partially purified lectins, suitable for specific applications.

Many of the lectins are available as conjugates (conjugation does not alter the specificity of the lectin):

- 1. fluorochromes (for detection by fluorimetry).
- 2. enzymes (for enzyme-linked assays).
- 3. insoluble matrices (for use as affinity media).

Please refer to the table for general information on the most common lectins.

Procedure

A general agglutination procedure using this lectin with 96-well plates is as follows:

- 1. Prepare a lectin solution of 1 mg/ml in PBS buffer, pH 6.8.
- 2. Pipette 50 μ L of fresh PBS into each well and add 50 μ L of the lectin solution into the first well.
- 3. Serial dilutions are made by pipetting 50 μ L from each successive well into the next well.
- 4. Blood type A with a 2% hematocrit is used as the substrate.
- Pipette 50 μL of blood into each well.
- 6. Visually determine agglutination.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

This lectin is soluble in phosphate buffered saline, pH 6.8, at 1 mg/ml.

Storage/Stability

Aggregation is thought to occur in the presence of high concentrations of 2-mercaptoethanol.

			Specificity		
Lectin	MW (kDa)	Subunits	Blood Group	Sugar	<u>Activity</u>
Abrus precatorius			_		+
Agglutinin	134	4		gal	
Abrin A (toxin)	60	2		gal	
Abrin B (toxin)	63.8	2(αβ)		gal	
Agarius bisporus	58.5	_	-	β-gal(1→3)galNAc	
Anguilla anguilla	40	2	Н	α -L-Fuc	
Arachis hypogaea	120	4	T	β-gal(1→3)galNAc	
Artocarpus integrifolia	42	4	T	α-gal→OMe	+
Bandeiraea simplicifolia					
BS-I	114	4	A, B	α -gal, α -galNAc	
BS-I-A ₄	114	4	Α	α-galNAc	
BS-I-B ₄	114	4	В	lpha-gal	
BS-II	113	4	acq, B, Tk, T	glcNAc	
Bauhinia purpurea	195	4	_	β-gal(1→3)galNAc	+
Caragana arborescens	60; 120 ^a	2/4	_	galNAc	
Cicer arietinum	44	2	_	fetuin	
Codium fragile	60	4	_	galNAc	
Concanavalin A	102	4	_	α-man, α-glc	+
Succinyl-Concanavalin A	51	2	_	α-man, α-glc	+ ^b
Cytisus scoparius	_	_	_	galNAc, gal	
Datura stramonium	86	2(αβ)	_	(glcNAc) ₂	
Dolichos biflorus	140	4	A_1	α-galNAc	
Erythrina corallodendron	60	2		β-gal(1→4)glcNAc	+
Erythrina cristagalli	56.8	2(αβ)	_	β-gal(1→4)glcNAc	
Euonymus europaeus	166	4(αβ)	В, Н	α-gal(1→3)gal	+
Galanthus nivalis	52	4	(h)	non-reduc. α-man	•
Glycine max	110	4	_	galNAc	+ ^c
Helix aspersa	79	_	Α	galNAc	•
Helix pomatia	. 5 79	6	A	galNAc	
Lathyrus odoratus	40-43	4(αβ)	_	α-man	+
Lens culinaris	49	2	_	α-man	+
Limulus polyphemus	400	_ 18	_	NeuNAc	•
Bacterial agglutinin	_	_	_	galNAc, glcNAc	
Lycopersicon esculentum	71	_	_	(glcNAc) ₃	
Maackia amurensis	130	2(αβ)	0	sialic acid	+
Maclura pomifera	40-43	2(αβ)	_	α -gal, α -galNAc	•
Momordica charantia	115-129	2(αβ) 4(αβ)	_	gal, galNAc	
Naja mocambique mocambique		1 (αρ)	_	gai, gailtAc	
Naja mocambique mocambique Naja naja kaouthia	, –	_	_	_	
	26	2	_ (b)	- or D man	
Narcissus pseudonarcissus	20	2	(h)	lpha-D-man	
Perseau americana	_ 112	_	_	_	
Phaseolus coccineus Phaseolus limensis		4		- colNIA o	
Phaseolus Ilmensis	247(II)	8 4	Α	galNAc	+
Phaseolus vulgaris	124(III)	4			
<u> </u>	120	4		oligogooborida	
PHA-E	128	4	_	oligosaccharide	+
PHA-L PHA-P	128	4	_	oligosaccharide	+
PHA-P PHA-M					
E I IW-IM					

Table (continued)

		,	Mitogenic		
Lectin	MW (kDa)	Subunits	Blood Group	Sugar	Activity
Phytolacca americana	32	_	_	(glcNAc) ₃	+
Pisum sativum	49	4(αβ)	_	α -man	+
Pseudomonas aeruginosa PA-I	13-13.7	_	_	gal	+ ^c
Psophocarpus tetragonolobus	35	1	_	galNAc, gal	
Ptilota plumosa	65; 170	_	В	lpha-gal	
Ricinus communis					
Toxin, RCA ₆₀	60	2	_	galNAc, β-gal	
Toxin, RCA ₁₂₀	120	4	_	β-gal	
Sambucus nigra	140	4(αβ)	_	αNeuNAC(2→6)gal	+ ^c
				galNAc	
Solanum tuberosum	50; 100 ^a	1, 2	_	(glcNAc) ₃	
Sophora japonica	133	4	A, B	β-galNAc	
Tetragonolobus purpureas	120(A)	4	Н	lpha-L-fuc	
	58(BA)	2	Н	lpha-L-fuc	
	117(C)	4	Н	α -L-fuc	
Triticum vulgaris	36	2	_	(glcNAc) ₂ , NeuNAc	+
Ulex europaeus					
UEA I	68	_	Н	lpha-L-fuc	
UEA II	68	_	_	(glcNAc) ₂	
Vicia faba	50	4(αβ)	_	man, glc	+
Vicia sativa	40	4(αβ)	_	glc, man	+
Vicia villosa	139	4	$A_{1+}T_n$	galNAc	
A_4	134	4	A_1	galNAc	
B_4	143	4	T_n	galNAc	
Vigna radiata	160	4	_	lpha-gal	
Viscum album	115	4(αβ)	_	β -gal	
Wisteria floribunda	68	2	-	galNAc	

Concentration-dependent molecular weight
 Non-agglutinating and mitogenic

References

1. Lotan, R., et al., Biochemistry, 16(9), 1787-1794 (1977).

IRB, MWM, JRC, NSB, SAG, GCY 02/17-1

^c Mitogenic for neuraminidase-treated lymphocytes