

Data Sheet

BioTracker™ DCM- β gal Live Cell Dye

Live Cell Probe

SCT050

Pack Size: 1 mg

Store at -20°C

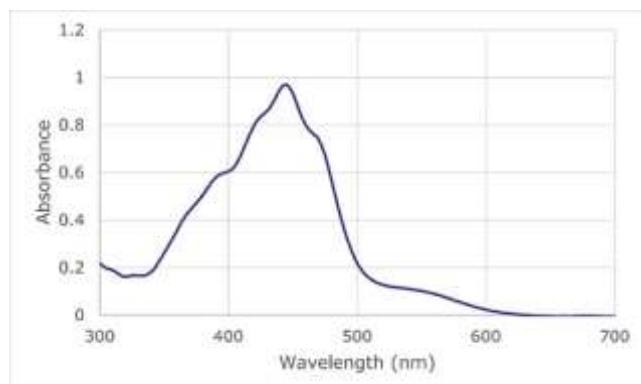
FOR RESEARCH USE ONLY

Not for use in diagnostic procedures. Not for human or animal consumption.

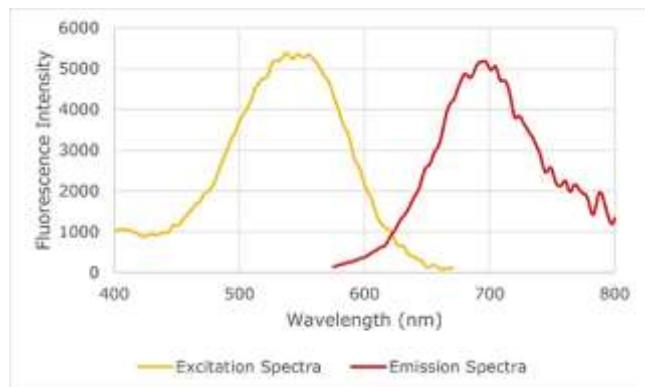
Background

The BioTracker™ DCM- β gal live cell probe is a ratiometric near-infrared (NIR) dye for the real-time fluorescent quantification of beta-galactosidase (β gal) enzyme activity *in vitro*, *in vivo* and *in situ*.

β -galactosidase is an important marker for cell senescence and for primary ovarian cancers. BioTracker™ DCM- β gal live cell dye has light-up ratiometric NIR fluorescence characterized by a large Stokes shift, higher photostability than commercial ICG, and pH independency under the physiological range allowing for the real-time evaluation of β gal activity. DCM- β gal displays higher affinity for β gal than is demonstrated by commercial X-gal, and a faster response to β gal than the previously reported FDG probe.


Source

The BioTracker™ DCM- β gal Live Cell Dye (SCT050) does not contain genetically modified organisms.


Spectral Properties

Excitation max: 560 nm

Emission max: 695 nm

Figure 1: Probe absorbance data. 3 μL of probe at stock concentration (10 mM) was diluted in 1 mL of solution (PBS pH 7.4/DMSO 7:3 v/v) in addition to 12 U of β Gal (G6008). Probe solution was incubated for 45 minutes at 37°C before undergoing an absorbance scan. Spectral scans were conducted using a PerkinElmer FL8500 Fluorescence Spectrophotometer.

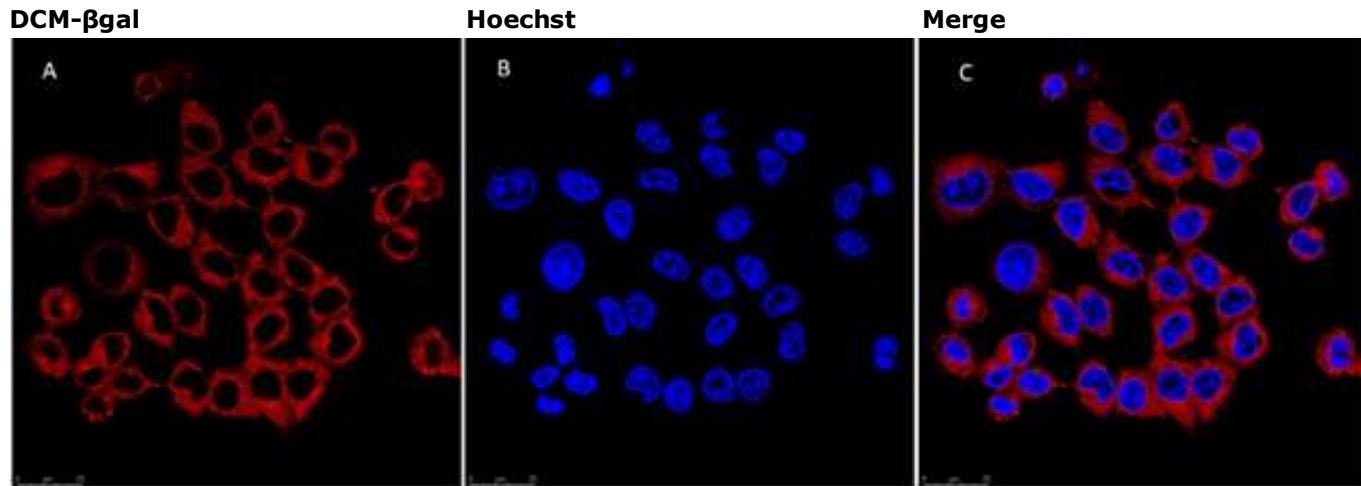
Figure 2: Probe excitation and emission data. 3 μ L of probe at stock concentration (10 mM) was diluted in 1 mL of solution (PBS pH 7.4/DMSO 7:3 v/v) in addition to 12 U of β Gal (G6008). Probe solution was incubated for 45 minutes at 37 °C before undergoing excitation and emission scans. Spectral scans were conducted using a PerkinElmer FL8500 Fluorescence Spectrophotometer.

Quality Control Testing

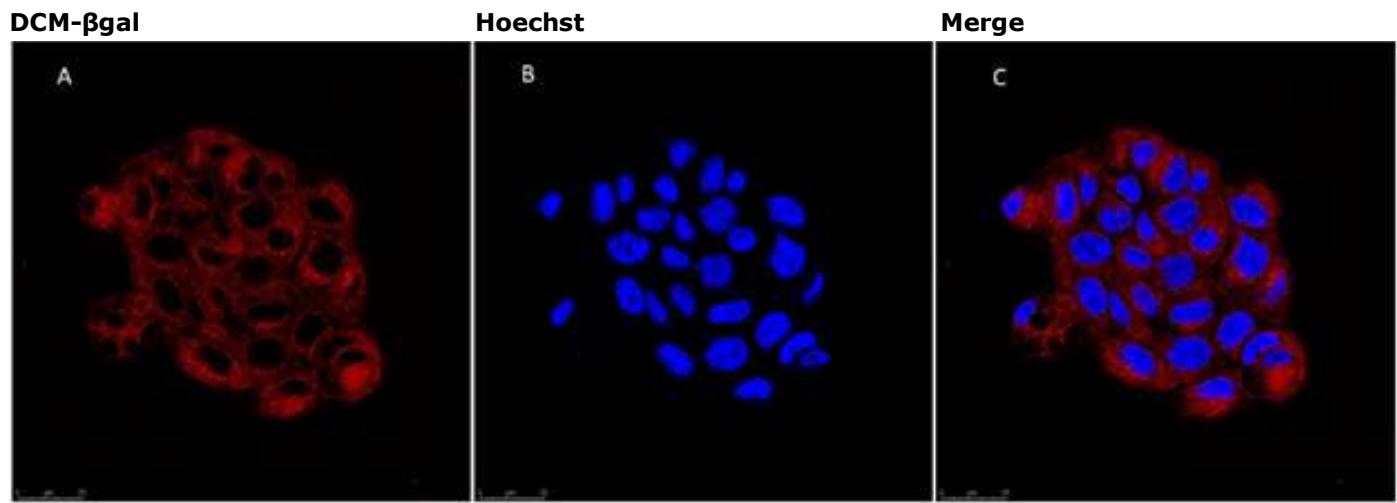
Purity: \geq 98% confirmed by HPLC, HNMR, LC-MS and elemental analysis.

Molar Mass: 474.5 g/mol

Storage and Handling


Store BioTracker™ DCM- β Gal Live Cell Dye at -20 °C, desiccated and protected from light.

Note: Centrifuge vial briefly to collect contents at bottom of vial before opening.


Presentation

Lyophilized. Yellow solid.

Representative Data

Figure 3: Confocal microscopy image of β -galactosidase staining. HeLa cells were cultured and stained with 10 μ M DCM- β Gal dye solution for (A) β gal, co-stained with (B) Hoechst nuclear dye and (C) merged.

Figure 4: Confocal microscopy image of β -Galactosidase staining. OVCAR-3 cells were cultured and stained with 10 μ M DCM- β Gal dye solution for (A) β gal, co-stained with (B) Hoechst nuclear dye, and (C) merged.

Protocols

Preparing BioTracker™ DCM- β Gal live cell dye stock solution

1. Before opening the vial, spin down the solid to the bottom by a microcentrifuge or by a desktop centrifuge.
2. Warm the vial to room temperature. Prepare the DCM- β gal (Molecular Weight: 474.5 g/mol) dye stock solution by dissolving the contents of one vial (1 mg) in 211 μ L of DMSO to create a 10 mM solution.
3. Aliquot and store stock solution at -20 °C or below.

Labeling cells

1. Culture cells in an appropriate medium and vessel for fluorescence microscopy.
2. Prepare the DCM- β gal staining solution by diluting the DCM- β gal stock solution 1:1000 in culture medium.
3. Remove the cell culture medium from the cells.
4. Add sufficient staining solution to cover the cells.
5. Incubate for 30 minutes, protected from light.
6. Observe the cells under fluorescence microscope for NIR fluorescence: $\lambda_{\text{ex}} = 560$ nm, $\lambda_{\text{em}} = 605\text{--}725$ nm.

Note: Optimal concentration must be determined by end user.

References

1. Gu K, Xu Y, Li H, Guo Z, Zhu S, Zhu S, Shi P, James TD, Tian H, Zhu W-H. 2016. Real-Time Tracking and In Vivo Visualization of β -Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe. *Journal of the American Chemical Society*. 138(16):5334–5340.
doi:<https://doi.org/10.1021/jacs.6b01705>.

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

Merck, BioTracker and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

© 2024 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Document Template 20306518 Ver 6.0

20685652 Ver 2.0, Rev 20MAY2024, AV

