SIGMA-ALDRICH®

sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information

PAK1/CDC42, Active, GST-tagged, human Precisio[™] Kinase Recombinant, expressed in *Sf*9 cells

Catalog Number **K2893** Lot Number 099K0661 Storage Temperature –70 °C

Synonyms: PAKalpha; MGC130000; MGC130001

Product Description

PAK1 is a member of the p21-activated kinases (PAKs), which have been implicated in the regulation of cell morphology, motility, and transformation. These serine/threonine kinases are activated by and are effectors of small GTPases, CDC42 and RAC. PAK1 belongs to the Group I PAKs, which also includes PAK2 and PAK3.¹ PAK1 is a key regulator of the actin cytoskeleton, adhesion, and cell motility. Inactive dimeric PAK1 is mainly cytosolic and interaction with the activators Cdc42-GTP and Rac1-GTP stimulates the kinase at the sites of cellular protrusions forming adhesions to the extracellular matrix.²

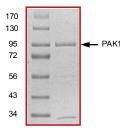
This recombinant product was expressed by baculovirus in *Sf*9 insect cells using an N-terminal GST-tag. The gene accession number is NM 002576. It is supplied in 50 mM Tris-HCI, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ~96 kDa

Purity: ≥70% (SDS-PAGE, see Figure 1)

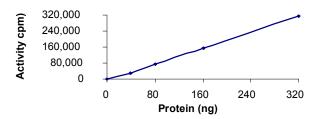
Specific Activity: 40-53 nmole/min/mg (see Figure 2)

Precautions and Disclaimer


This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.


Figure 1.

SDS-PAGE Gel of Lot Number 099K0661: >80% (densitometry)

Figure 2.

Specific Activity of Lot Number 099K0661: 46 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 $ng/\mu l$ BSA solution.

Kinase Solution – Dilute the Active PAK1/CDC42 $(0.1 \ \mu g/\mu)$ with Kinase Dilution Buffer to the desired concentration.

<u>Note</u>: The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended that the researcher perform a serial dilution of Active PAK1/CDC42 kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μl aliquots at –20 °C.

 γ -³²P-ATP Assay Cocktail (250 μ M) – Combine 5.75 ml of Kinase Assay Buffer, 150 μ l of 10 mM ATP Stock Solution, 100 μ l of γ -³²P-ATP (1 mCi/100 μ l). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Dissolve the synthetic peptide substrate (RRRLSFAEPG) in water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

<u>Kinase Assay</u>

This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

- 1. Thaw the Active PAK1/CDC42, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -³²P-ATP Assay Cocktail may be thawed at room temperature.
- In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 15 μl: 10 μl of Kinase Solution 5 μl of 12.5 mM MnCl₂/0.5 mM GTP Solution
- 3. Initiate each reaction with the addition of 5 μ l of the γ -³²P-ATP Assay Cocktail, bringing the final reaction volume to 20 μ l. Incubate the mixture in a water bath at 30 °C for 20 minutes.
- 4. After the 20 minute incubation, add 5 μl of 1 mg/ml substrate solution to the reaction mixture.
- 5. Set up a blank control as outlined in steps 2–4, substituting 5 μ l of cold water (4 °C) for the Substrate Solution.

- 6. After an additional 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.
- Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
- 8. Set up a radioactive control to measure the total γ^{-32} P-ATP counts introduced into the reaction. Spot 5 µl of the γ^{-32} P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
- 9. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- 10. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

 $SR = \frac{cpm \text{ of } 5 \ \mu \text{ of } \gamma^{-32} P\text{-ATP Assay Cocktail}}{nmole \text{ of ATP}}$ $cpm - value \ from \ control \ (step 7)$ $nmole - 1.25 \ nmole \ (5 \ \mu \text{ l of } 250 \ \mu \text{M ATP}$ $Assay \ Cocktail)$

2. Specific Kinase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\frac{\Delta \text{cpm} \times (25/20)}{\text{SR} \times \text{E} \times \text{T}}$$

SR = specific radioactivity of the ATP (cpm/nmole ATP) \triangle cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume

- 20 = spot volume
- T = reaction time (minutes)
- E = amount of enzyme (mg)

References

- 1. Jaffer, Z.M. et al., p21-activated kinases: three more join the Pak. Int. J. Biochem. Cell Biol., **34**, 713-717 (2002).
- 2. Parrini, M.C. et al., Spatiotemporal regulation of the Pak1 kinase. Biochem. Soc. Trans., **33**, 646-648 (2005).

Precisio is a trademark of Sigma-Aldrich[®] Biotechnology LP and Sigma-Aldrich Co.

BKR,MAM 09/09-1

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.