

3050 Spruce Street Saint Louis, Missouri 63103 USA Telephone 800-325-5832 • (314) 771-5765 Fax (314) 286-7828 email: techserv@sial.com sigma-aldrich.com

ProductInformation

Glucose-6-phosphate Dehydrogenase from *Leuconostoc mesenteroides*

Product Number **G 5885** Storage Temperature 2-8 °C

Product Description

Enzyme Commission (EC) Number: 1.1.1.49 CAS Number: 9001-40-5 Molecular Weight: 128 kDa (gel filtration)⁹ 103.7 kDa for the dimer (equilibrium sedimentation)¹ Approximately 50 kDa for the monomer (denaturing gel electrophoresis)² λ_{max} : 280.5 nm¹ Extinction Coefficient: E^{0.1%} = 1.15 (280.5 nm, 0.09 M Tris-HCl, pH 7.2)¹ Synonym: G-6-PDH

Glucose-6-Phophate Dehydrogenase (G-6-PDH) consists of two subunits of equivalent molecular weight.³ The amino acid sequence of the monomer has been published.⁴

G-6-PDH has been utilized in assays for nicotinamide adenine dinucleotide¹¹ and tissue pyridine nucleotides.¹²

The K_M value for NAD⁺ as a substrate is approximately 1.8 times better than that for NADP^{+,5} At pH 7.8 in Tris buffer, $K_M = 5.3 \times 10^{-4}$ M for glucose-6-phosphate and $K_M = 0.99 \times 10^{-4}$ M for NADP^{+,6} Binding constants have been reported for the native and pyridoxal-modified enzyme.⁷ A lysine is in the active site (modified by pyridoxal phosphate).⁸

G-6-PDH can be reactivated from urea-denatured solutions.²

Glucose 6-phosphate dehydrogenase is a key regulatory enzyme in the first step of the pentose phosphate pathway. G-6-P-DH oxidizes glucose-6phosphogluconate. Polyacrylamide gel electrophoresis, activity staining, and anti-yeast G-6-PDH antibody immunoblotting studies have indicated that G-6-PDH is a glycoprotein.¹⁰

This product is approximately 25% protein; the remainder is the buffer from which it is lyophilized. The product is lyophilized in the presence of a neutral, colloidal stabilizer, Tris buffer, and a trace of magnesium chloride. The stabilizer added to this product is an inert neutral polymer, which is not expected to interfere in a biological assay. It protects the product through the lyophilization process. A DEAE ion exchange column can be used with a buffer of approximately pH 7.3 to remove this stabilizer. Product No. G 5760 is an ammonium sulfate suspension of the enzyme and does not contain this stabilizer.

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

The product can be dissolved at 1 mg/ml in 5 mM glycine buffer, pH 8, (with or without 0.1% BSA) or in deionized water at 1 mg/ml (buffer is preferable).

Storage/Stability

Solutions dissolved at 1 mg/ml in 5 mM glycine buffer, pH 8, (with or without 0.1% BSA) or in deionized water (1 mg/ml) can be aliquoted and stored frozen for approximately 2 months. It is best to subject the aliquot to no more than one freeze/thaw cycle. For storage in the refrigerator, use an ammonium sulfate suspension of this enzyme (Product No. G 5760).

References

- Olive, C., and Levy, H. R., Glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. Physical studies. J. Biol. Chem., 246(7), 2043-2046 (1971).
- Haghighi, B., and Levy, H. R., Glucose-6phosphate dehydrogenase from Leuconostoc mesenteroides. Kinetics of reassociation and reactivation from inactive subunits. Biochemistry, 21(25), 6429-6434 (1982).
- Ishaque, A., et al., On the absence of cysteine in glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. Biochem. Biophys. Res. Commun., **59(3)**, 894-901 (1974).
- Lee, W. T., et al., Cloning of the gene and amino acid sequence for glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Biol. Chem., **266(20)**, 13028-13034 (1991).

- Olive, C., and Levy, H. R., The preparation and some properties of crystalline glucose 6phosphate dehydrogenase from Leuconostoc mesenteroides. Biochemistry, 6(3), 730 (1967).
- Enzyme Handbook, vol. 1, Barman, T. E., Springer-Verlag, (New York, NY:1969) pp. 73-74.
- Haghighi, B., and Levy, H.R., Glucose-6phosphate dehydrogenase from Leuconostoc mesenteroides. Conformational transitions induced by nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and glucose 6-phosphate monitored by fluorescent probes. Biochemistry, **21**, 6421-6428 (1982).
- Haghighi, B., and Levy, H.R., Glucose-6phosphate dehydrogenase from Leuconostoc mesenteroides. Isolation and sequence of a peptide containing an essential lysine. Biochemistry, **21(25)**, 6415-6420 (1982).

- Andrews, P., The Gel-Filtration Behaviour of Proteins Related to their Molecular Weights over a Wide Range. Biochem. J., 96(3), 595-606 (1965).
- Reilly, K. E., and Allred, J.B., Glucose-6phosphate Dehydrogenase from *Saccharomyces cerevisiae* is a Glycoprotein. Biochem. Biophys. Res. Commun., **216(3)**, 993-998 (1995).
- Bernofsky, C., and Swan, M., An improved cycling assay for nicotinamide adenine dinucleotide. Anal. Biochem., 53(2), 452-458 (1973).
- Nisselbaum, J.S., and Green, S., A simple ultramicro method for determination of pyridine nucleotides in tissues. Anal. Biochem., 27(2), 212-217 (1969).
- Domagk, G. F., and Chilla, R., Glucose-6phosphate Dehydrogenase from *Candida utilis*. Meth. Enzymol., **41-B**, 205-208 (1975).

JSX/HLD/RXR 12/02

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.