

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

SC 19220

Product Number **S 3065** Storage Temperature RT

Cas #: 19395-87-0

Synonyms: 8—Chloro–dibenz[b,f][1,4]oxazepine-10(11H)–carboxylic acid 2–acetylhydrazide

Product Description

Molecular Formula: C₁₆ H₁₄O₃ N₃ Cl Molecular Weight: 331.76 (anhydrous)

Appearance: white solid Purity: 99% (HPLC) Melting Point: 190-191 °C

Prostanoids comprise prostaglandins and thromboxanes and are metabolites of arachidonic acid. The receptors for prostanoids are classified on the basis of sensitivity toward the five naturally–occurring prostanoids: PDG₂, PGE₂, PGF₂, PGI₂ and TXA₂. They are named DP, EP, FP IP and TP, respectively. EP receptors have been subdivided into four subgroups, EP₁, EP₂, EP₃ and EP₄. Prostaglandin E₂ (PGE₂) is involved in a number of physiologic and pathophysiologic events in many tissues of the body. The biologic effects of PGE₂ are mediated through interaction with specific membrane-bound G protein-coupled prostanoid EP receptors.¹

The human EP₁ receptor subtype modulates an increase in intracellular Ca^{2+} . SC 19220 is a stable synthetic antagonist of prostaglandin E₂ (PGE₂), which blocks the activity of EP₁ receptor in a species-selective manner. In *in vitro* studies of chondrocyte differentiation, activation of PKC by the vitamin D metabolite 24,25-(OH)(2)D(3) was inhibited in a dose-dependent manner by PTPGE₂ and by SC-19220.^{2,3}

Experiments involving osteoclasts have shown that 24,25-(OH)(2)D(3), prostaglandin PGE_2 and parathyroid hormone (PTH) induced osteoclast formation in cell culture. SC 19220 inhibited this activation. In addition, SC-19220 also inhibited osteoclast formation induced by IL -11 and IL-6 as well as by PTH.

In a mouse model of burn sepsis, PGE_2 is responsible for shift in bone marrow progenitors proliferation toward monocytopoiesis. These shift can be eliminated by blocking the cellular interactions of PGE_2 with SC 19220. In the rat model SC 19220 suppresses the rhlL-1 β -induced fever, suggesting that fever in rats is mediated, at least partially, by activation of PGE_2 receptor subtype EP_1 . Similar results were obtained with mouse brain cells, in which the EP_1 receptor expressed in the hypothalamus, mediates the fever response evoked by prostaglandin E_2 . Finally, in rat model of hyperalgesia resulting from nerve injury, subcutaneous injection of SC-19220 produced significant relief of mechanical and thermal hyperalgesia. This represents further evidence that inflammatory mediators contribute to neuropathic pain.

For your research needs, Sigma supplies a number of prostaglandins, selective agonists and antagonists. For a complete list of products visit our website at www.Sigma-Aldrich.com.

Preparation Instructions

SC19220 is soluble in DMSO at >10 mg/ml. It is insoluble in water.

Storage/Stability

Store at room temperature tightly sealed and protected from light.

References

- Funk, C.D., et al., Cloning and expression of a cDNA for the human prostaglandin E receptor EP-1 subtype., J. Biol. Chem., 268, 26767-26772 (1993).
- Del Toro, F Jr., et al., Characterization of prostaglandin E₂ receptors and their role in 24, 25–(OH)(2)D(3)–mediated effects on resting zone chondrocytes.
 J. Cell. Physiol., 182, 196-208 (2000).
- Sylvia, V.L., et al., Characterization of PGE₂ receptors EP and their role as mediators of 1α, 25-(OH)(2)D(3) effects on growth zone chondrocytes., J. Steroid. Biochem. Mol. Biol., 78, 261-274 (2001).
- Inoue, H., et al., SC-19220, a prostaglandin E₂ antagonist, inhibits osteoclast formation by 1,25-dihydroxyvitamin D3 in cell cultures., J. Endocrinol., 161, 231-236 (1999).
- 5. Santangelo, S., et al., Prostaglandin E₂ receptor antagonist (SC-19220) treatment restores the balance to bone marrow myelopoiesis after burn sepsis., J.Trauma, **48**, 826-830 (2000).
- Oka, K., et al., PGE₂ receptor subtype EP₁
 antagonist may inhibit central interleukin-1β–
 induced fever in rats., Am. J. Physiol., 275,
 R1762-1765 (1998).
- 7. Syriatowicz, J.P., et al., Hyperalgesia due to nerve injury: role of prostaglandins., Neuroscience, **94**, 587-594 (1999)

Rev 2/03