

Novabiochem® Letters: 4/11

NEW Selenocysteine derivative for Fmoc SPPS

Fmoc-Sec(pMeOBzl)-OH

Features & Benefits

- Reagent for the introduction of selenocysteine by Fmoc SPPS
- p-MeOBzl group is stable to TFA but cleaved by TMSBr/TFA
- Oxidation with TFA-DMSO generates diselenide

Selenocysteine (Sec) is regarded as the 21st proteogenic amino acid [1]. It is coded by the stop codon UGA, whose usual function is hijacked by tRNA^{SeC} to enable incorporation of Sec during transcription. Sec is frequently located in active sites of enzymes where it functions as a nucleophile, redox center or ligand.

Fmoc-Sec(pMeOBzl)-OH is the standard building block for the introduction of selenocysteine by Fmoc SPPS [2, 3]. The synthesis of selenocysteine-containing

Inside this issue

NEW Selenocysteine derivative for Fmoc SPPS NEW N-Methylated amino acid analogs NEW Fmoc-protected amino-acid building blocks NEW Photoactivatable cross-linking reagent **NEW Coupling reagent** Reagent for peptide formylation

peptides is more challenging than that of cysteinyl peptides . Sec residues are more prone to β -elimination because selenols are better leaving groups and are more acidic than thiols. Consequently, Sec easily undergoes enantiomerization during carboxyl activation and can form dehydroalanine and β -piperidinylalanine during coupling and Fmocdeprotection steps [4]. Therefore, activation methods, such as HBTU or PyBOP®, that involve the addition of a tertiary base should be avoided for addition of the Sec and all subsequent residues, and the treatment time with piperidine should be reduced to the minimum to effect Fmoc removal. Furthermore, Cys(Trt) should not be used in conjunction with Sec(pMeOBzl) as the trityl cation can promote elimination during the TFA-mediated cleavage reaction [4].

Cleavage and side-chain deprotection of Sec-containing peptides can be effected using TFA-m-cresol-thioanisole-EDT-water (80:5:5:5:5)[2] or TFA-water-DCM-TIS (89:5:51) at 4 °C [4]. Cleavage at room temperature can lead to dehydroalanine formation. Because the Sec-pMeOBzl bond is stable to TFA, these methods result in formation of the corresponding Sec(pMeOBzl) peptide. Subsequent removal of the pMeOBzl can be effected using strong acids such as TMSOTf or TMSBr in TFA [1]. However, in practice, deprotection is generally carried out under oxidative conditions with 5-10% DMSO in TFA [1] or 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) in TFA [5], to produce the more stable diselenide or selenosulfide peptides. Because of a large negative redox potential, these can not easily be reduced by thiols unless used in huge excess. Reduction is therefore usually effected by phosphines such as tris(2-carboxyethyl)phosphine (TCEP). The use of excess phosphine should, however, be avoided because this can lead to deselenation [6].

Selenopeptide chemistry has recently been reviewed by Muttenthaler and Alewood [7].

NEW N-methylated amino-acid analogs

Fmoc-N-Me-L-Asp(OtBu)-OH

Fmoc-N-Me-L-Glu(OtBu)-OH

Fmoc-N-Me-L-Thr(tBu)-OH

Fmoc-N-Me-L-Tyr(tBu)-OH

N-Methylation of backbone amides is an important strategy for protecting against proteolysis or stabilizing turn conformations in synthetic peptides. Fmoc-N-Me-L-Asp(OtBu)-OH, Fmoc-N-Me-L-Glu(OtBu)-OH, Fmoc-N-Me-L-Thr(tBu)-OH and Fmoc-N-Me-L-Tyr(tBu)-OH are the latest additions to our extensive range of Fmoc-protected N-Me amino acids. Introduction of these derivatives is best achieved using HATU/DIPEA. Preactivation times should be kept to a minimum to avoid racemization.

852329 NEW	Fmoc-N-Me-L-Asp(OtBu)-OH	250 mg 1 g
852330 NEW	Fmoc-N-Me-L-Glu(OtBu)-OH	250 mg 1 g
852331 NEW	Fmoc-N-Me-L-Thr(tBu)-OH	250 mg 1 g
852332 NEW	Fmoc-N-Me-L-Tyr(tBu)-OH	250 mg 1 g
852138	Fmoc-MeAla-OH	1 g 5 g
852248	Fmoc-D-MeAla-OH	1 g 5 g
852231	Fmoc-Melle-OH	1 g
852139	Fmoc-MeLeu-OH	5 g 1 g
852137	Fmoc-MePhe-OH	5 g 1 g
		5 g
852055	Fmoc-Sar-OH	5 g
050000	5 N.M. C ((D.) OH	25 g
852289	Fmoc-N-Me-Ser(tBu)-OH	250 mg 1 g
		5 g
852230	Fmoc-MeVal-OH	1 g
		5 q

NEW Fmoc-protected amino acid building blocks

Fmoc-Pen(Trt)-OH

Features & Benefits

- Reagent for the introduction of penicillamine by Fmoc SPPS
- Compatible with standard Fmoc protocols
- Free sulfhydryl liberated during TFA-cleavage reaction

Fmoc-Pen(Trt)-OH is the standard building block for incorporation of penicillamine by Fmoc SPPS. It can be coupled in exactly the same manner as Fmoc-Cys(Trt)-OH and following TFA cleavage affords the peptide bearing a penicillamine with a free sulfhydryl group.

Penicillamine is frequently employed in place of cysteine to introduce topological constraints to biologically active peptides. This strategy has been used recently to develop bifunctional opioid agonist-neurokinin-1 receptor antagonists [8] and urotensin-II receptor antagonists [9].

Penicillamine has also been employed as a valine precursor to facilitate native chemical ligation of peptides containing hydrophobic Aaa-Val sequences [10]. Ligation of a peptide bearing an *N*-terminal penicillamine with the appropriate thioester fragment, followed by desulfurization, yields the desired protein containing a valine residue at the ligation junction.

852339 NEW Fmoc-Pen(Trt)-OH

NEW Photoactivatable cross-linking reagent

TDBA

Features & Benefits

- Useful probe for photoaffinity labeling of ligand-receptor interactions
- Activated by 300 nm light

4-(3-(Trifluoromethyl)-3H-diazirin-3-yl)benzoic acid (TDBA) is a reagent for photoaffinity labeling of peptides, proteins and small molecules [11].

Irradiation at 300 nm eliminates nitrogen with the formation of a highly reactive carbene capable of cross-linking molecules in close proximity.

For labeling of peptides, TDBA can be introduced to *N*-terminal or sidechain amino groups with any standard coupling reagent. Reaction with TSTU converts TDBA to the corresponding OSu ester, which can be used for labeling of proteins in aqueous media.

TDBA has been used in peptide synthesis to prepare an *N*-terminally TDBA-labeled photoactivatable antagonist for the corticotropin-releasing factor receptor, type 2 [12]. In this work, introduction of TDBA was effected using HBTU/DIPEA activation in NMP. No issues with its stability during the TFA cleavage were noted.

851093 NFW TDBA

25 mg 100 mg 250 mg

NEW Coupling reagent

TSTU

1 q

Features & Benefits

- Reagent for converting carboxylic acid to water-compatible OSu esters
- Cost-effective compared to pre-formed OSu esters

The use of OSu esters is the favored method for labeling the amino functions of biomolecules in aqueous media. However, pre-formed OSu esters are generally expensive and are often heterogenous because they undergo slow hydrolysis on storage. One cost effective alternative is to generate the OSu ester directly from the cheaper carboxylic acid form of the labeling reagent immediately before use.

One of the most convenient reagents for making OSu esters is TSTU [13]. Dissolution of the carboxylic acid with TSTU and DIPEA in acetonitrile or DMF leads to formation of the OSu ester in a few minutes. The solution of active ester can be added directly to the aqueous solution of the biomolecule. Alternatively, in the case of acetonitrile, the solvent can be evaporated with a gentle stream of nitrogen and the residue redissolved in DMSO before addition to the biomolecule solution. This approach is compatible with all of the Novabiochem® brands carboxylic acid functionalized dyes and PEG building blocks.

TSTU also appears to be a valuable reagent for mediating fragment condensation reactions since Nishiyama, et al. [14] have found that when used in conjunction with CuCl₂ it coupled peptides bearing *C*-terminal *N*-methylamino acid residues with negligible epimerization.

851206 TSTU NFW

5 g 25 g

Reagent for peptide formylation

p-Nitrophenyl formate

p-Nitrophenyl formate is a convenient reagent for the introduction of formyl groups during peptide synthesis. Treatment of a peptidyl resin containing free amino groups with three equivalents of p-nitrophenyl formate in DMF will effect complete fomylation in 1 – 2 hours.

N-Terminally formylated peptides are inducers of lymphocyte chemotaxis and macrophage activation [15]. Recently, N^{ϵ} -formylation of lysine residues has been identified as a widespread post-translational modification of histone proteins [16].

851201 p-Nitrophenyl formate NEW

References

- 1. A. Böck, et al. (1991) Mol. Microbiol., 5, 515.
- 2. T. Koide, et al. (1993) Chem. Pharm. Bull., 41, 502.
- 3. T. Koide, et al. (1993) Chem. Pharm. Bull., 41, 1596.
- 4. D. Besse and L. Moroder (1997) J. Pept. Sci., 3, 442.
- 5. K. M. Harris, et al. (2007) J. Pept. Sci., 13, 81.
- 6. M. D. Gieselman, et al. (2001) Org. Lett., 3, 1331.
- 7. M. Muttenthaler & P. F. Alewood (2008) J. Pept. Sci., 14, 1223.
- 8. T. Yamamoto, et al. (2010) J. Med. Chem., 53, 5491.
- 9. P. Grieco, et al. (2009) J. Med. Chem., 52, 3927.
- 10. C. Haase, et al. (2008) *Angew. Chem. Int. Ed.*, 47, 6807.
- 11. M. Nassal (1983) *Liebigs Ann. Chem.* 1510.
- 12. I. Bonk, et al. (2002) FEBS, 269, 5288.
- 13. W. Bannwarth & R. Knorr (1991) Tetrahedron Lett., 32, 1157.
- 14. Y. Nishiyama, et al. (2000), Chem. Pharm. Bull., 48, 442.
- 15. M.-J. Rabiet, et al. (2005) Eur. J. Immunol., 35, 2486.
- 16. J. R. Wiśniewski, et al. (2008) Nucl. Acids Res., 36, 570.

Product prices and availability are subject to change. Products are warranted only to meet the specifications set forth on their label/packaging and/or certificate of analysis at the time of shipment or for the expressly stated duration. NO OTHER WARRANTY WHIFTHER EXPESS, IMPLIED OR BY OPERATION OF LAWI S GRANTED. The products are intended for research purposes only and are not to be used for drug or diagnostic purposes, or for human use. Merck KGaA's products may not be resold or used to manufacture commercial products without the prior written approval of Merck KGaA. All sales are subject to Merck KGaA's complete Terms and Conditions of Sale (or if sold through an affiliated company of Merck KGaA, such affiliated company's complete Terms and Conditions of Sale). Novabiochem® and PyBOP® are a registered trademarks of Merck KGaA in Australia, Germany, Japan, Switzerland, the United Kingdom, and the United States.

©Copyright 2011 Merck KGaA, Darmstadt, Germany. All rights reserved.

1 g

5 g 25 q