

Product Information

Osteopontin

Bovine milk

03514

Product Description

Bovine Osteopontin (OPN) is purified from bovine milk. The natural form of bovine Osteopontin has molecular mass of approximately 60 kDa. Bovine osteopontin cDNA encodes a 278 amino acid residue precursor protein with a 16 amino acid residue predicted signal peptide that is cleaved to yield a 278 amino acid residue mature protein with an intergrin binding sequence (RGD), a thrombin cleavage site, and N- and O-glycosylation sites. Human, mouse, rat, pig, and bovine osteopontin share approximately 40% amino acid sequence identity.

Osteopontin (OPN), also known as secreted phosphoprotein1 (Spp1), bone sialoprotein-1, and early T lymphocyte activation protein-1 (ETA-1), is a secreted acidic phosphorylated glycoprotein. Osteopontin has important functions in bone metabolism and inflammatory processes.¹ OPN binds various cell types through RGD-mediated interaction with the integrins $\alpha_v\beta 1$, $\alpha_v\beta 3$, $\alpha_v\beta 5$, and non-RGF-mediated interactions with CD44 variants and integrins ($\alpha_8\beta 1$ or $\alpha_9\beta 1$).²

Osteopontin (OPN), originally isolated from bone matrix, is also found in kidney, placenta, blood vessels, and various tumor tissues. Many cell types (macrophages, osteoclasts, activated T-cells,³ fibroblasts, epithelial cells, vascular smooth muscle cells, and natural killer cells) express osteopontin in response to activation by cytokines, growth factors, or inflammatory mediators. OPN inhibits nitric oxide production and cytotoxicity by activated macrophages.

Increased expression of OPN is associated with numerous pathobiological conditions such as atherosclerotic plaques, renal tubulointerstitial fibrosis, granuloma formations in tuberculosis and silicosis,⁴ neointimal formation associated with balloon catheterization, metastasizing tumors, and cerebral ischemia. OPN is chemotactic for macrophages, smooth muscle cells, endothelial cells, and glial cells.

Reagent

Reagent Osteopontin, Bovine is supplied as approximately 50 μ g of protein lyophilized from 100 μ L of a 0.2 μ m-filtered solution in PBS, pH 7.4 with 50 μ g of BSA per 1 μ g as carrier protein.

Storage/Stability

Prior to reconstitution, store at -10 to -25 °C. Reconstituted product under sterile conditions may be stored at 2-8 °C for up to one month. For prolonged storage, freeze in working aliquots. Avoid repeated freezing and thawing.

Preparation Instructions

Reconstitute at 10 μ g/mL in sterile PBS containing at least 0.1% human or bovine serum albumin. Prepare a stock solution of no less than 50 μ g/mL.

Product Profile

The biological activity of Bovine Osteopontin is measured by the ability of the immobilized protein to support the adhesion of HEK293 human embryonic kidney cells⁵. When 1×10^5 cells/well are added to a Bovine Osteopontin/OPN coated plate, cell adhesion is enhanced in a dose-dependent manner after 1 hour incubation at 37 °C. The ED₅₀ for this effect is 0.06-0.36 μ g/mL.

References

1. Denhardt, D. T., Noda, M., O'Regan, A. W., Pavlin, D., & Berman, J. S. (2001). Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. *The Journal of clinical investigation*, 107(9), 1055-1061.
2. Ashkar, S., Weber, G. F., Panoutsakopoulou, V., Sanchirico, M. E., Jansson, M., Zawaideh, S., ... & Cantor, H. (2000). Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. *Science*, 287(5454), 860-864.
3. Weber, G. F., & Cantor, H. (1996). The immunology of Eta-1/osteopontin. *Cytokine & growth factor reviews*, 7(3), 241-248.
4. Nau, Gerard J., Patrick Guilfoile, Geoffrey L. Chupp, Jeffrey S. Berman, Sue J. Kim, Hardy Kornfeld, and Richard A. Young. "A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis." *Proceedings of the National Academy of Sciences* 94, no. 12 (1997): 6414-6419.
5. Hu, D. D., Lin, E. C., Kovach, N. L., Hoyer, J. R., & Smith, J. W. (1995). A Biochemical Characterization of the Binding of Osteopontin to Integrins $\alpha\beta 1$ and $\alpha\beta 5$ (*). *Journal of Biological Chemistry*, 270(44), 26232-26238.

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

Merck and Sigma-Aldrich are trademarks of Merck or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

© 2004-2026 Merck and/or its affiliates. All Rights Reserved.

23335238 Rev 01/26

