Sign In to View Organizational & Contract Pricing
Select a Size
About This Item
Empirical Formula (Hill Notation):
C8H5AlO5
Molecular Weight:
208.10
UNSPSC Code:
26111700
NACRES:
NA.23
Quality Level
form
tablet
greener alternative product characteristics
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
surface area
1100-1500 m2/g
particle size distribution
31.55 μm (D50)
bulk density
0.4 g/cm3
greener alternative category
, Enabling
General description
Basolite (TM) A100 is also known as MIL-53(Al). It is an ultramicroporous metal framework (MOF).
Basolite®A100 is a microporous metal-organic framework (MOF), which consists of three-dimensional networks with micropores up to 900 pm in diameter. It has characteristics that are identical to MIL-53(Al) as it contains octahedral AlO4(OH)2 units connected through 1,4-benzenedicarboxylate ligands. It allows the formation of a framework with a high specific surface of 1084 m2g-1 area and a pore volume of about 0.51 cm2g-1.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.
Application
Basolite (TM) A100 was used in the separation of C8-alkylaromatic compounds.
Basolite®A100 is majorly used in the binary gas separation of CO2/CH4 and CO2/N2. It can also be used for gas adsorption (hydrogen gas) and for the supercritical adsorption of CO2.
Other Notes
can be reactivated at 200°C (vacuum)
Legal Information
Basolite is a registered trademark of BASF SE
Signal Word
Danger
Hazard Statements
Precautionary Statements
Hazard Classifications
Eye Irrit. 2 - Repr. 1B
Storage Class Code
6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
A combined computational and experimental study of high pressure and supercritical CO2 adsorption on Basolite MOFs
Deniz E, et al.
Microporous and Mesoporous Materials : The Official Journal of the International Zeolite Association, 175(1), 34-42 (2013)
MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations
Basu S, et al.
Separation and Purification Technology, 81(1), 31-40 (2011)
A complete procedure for acidic gas separation by adsorption on MIL-53 (Al)
Heymans N, et al.
Microporous and Mesoporous Materials : The Official Journal of the International Zeolite Association, 154(1), 93-99 (2012)
Christian Serre et al.
Journal of the American Chemical Society, 124(45), 13519-13526 (2002-11-07)
The first three-dimensional chromium(III) dicarboxylate, MIL-53as or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)].[HO(2)C-C(6)H(4)-CO(2)H](0.75), has been obtained under hydrothermal conditions (as: as-synthesized). The free acid can be removed by calcination giving the resulting solid, MIL-53ht or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)]. At room temperature, MIL-53ht adsorbs
Gérard Férey et al.
Chemical communications (Cambridge, England), (24), 2976-2977 (2004-01-06)
Hydrogen adsorption has been studied in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+); these solids show a hydrogen storage capacity of 3.8 and 3.1 wt.% respectively when loaded at 77 K under 1.6 MPa.
Articles
Metal-organic frameworks (MOFs) are porous, crystalline materials composed of metal ions bound by organic ligands.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service
