Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C29H23N7O2S2
CAS Number:
Molecular Weight:
565.67
UNSPSC Code:
12352200
NACRES:
NA.21
Assay:
≥97% (HPLC)
Form:
powder
Product Name
SC75741, ≥97% (HPLC)
InChI
1S/C29H23N7O2S2/c37-24(17-4-2-1-3-5-17)19-6-7-20-22(14-19)34-29(33-20)35-27(38)23-15-40-28(32-23)18-8-11-36(12-9-18)26-25-21(10-13-39-25)30-16-31-26/h1-7,10,13-16,18H,8-9,11-12H2,(H2,33,34,35,38)
InChI key
QNZVBFMXWNWVKG-UHFFFAOYSA-N
SMILES string
O=C(C1=CSC(C2CCN(C3=C4C(C=CS4)=NC=N3)CC2)=N1)NC5=NC6=CC(C(C7=CC=CC=C7)=O)=CC=C6N5
assay
≥97% (HPLC)
form
powder
color
white to beige
solubility
DMSO: 2 mg/mL, clear
storage temp.
2-8°C
Related Categories
Biochem/physiol Actions
NF-κB p65 subunit (RelA) DNA-binding inhibitor that effectively blocks influenza virus propagation both in cultures and in mice in vivo.
SC75741 (4SC-301; V1810) is a potent NF-kappaB (NF-κB) inhibitor (IC50 = 200 nM against 10 ng/mL TNF-α-induced NF-κB reporter gene expression in A549 cells) that impairs p65 subunit (RelA) DNA-binding activity without affecting p65 phosphorylation or nuclear translocation, nor proteasome-mediated IκBα degradation. SC75741 induces apoptosis in multiple myeloma cultures (IC50 from 5 to 12 μM in 48 hrs; OPM2, U266, NCI-H929, RPMI-8226), but not PBMCs (89% viability post 4-hr 100 μM SC75741 treatment). NF-κB inhibition by SC75741 treatment is reported to effectively block influenza virus propagation both in cultures in vitro (1-5 μM) and in mice in vivo (5 mg/kg daily i.v. or 7.5-15 mg/kg twice a day i.p.).
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Wenshuang Wu et al.
Oncotarget, 7(32), 52281-52293 (2016-07-23)
Millepachine (MIL) was a novel chalcone that was separated from Millettia pachycarpa Benth (Leguminosae). We found MIL induced apoptosis through activating NF-κB pathway both in SK-OV-3 and A2780S cells. Western blot showed that MIL increased the levels of IKKα, p-IKKα/β
Felix G Meinel et al.
Molecular cancer therapeutics, 9(2), 300-310 (2010-02-04)
Evidence is increasing that aberrant NF-kappaB activation is crucial for multiple myeloma pathophysiology and a promising target for new antimyeloma therapies. In this study, we assessed the in vitro antimyeloma activity of the novel NF-kappaB inhibitor V1810. Pharmacokinetics and toxicity
Ke-Wang Luo et al.
The Journal of nutritional biochemistry, 41, 56-64 (2017-01-04)
Epigallocatechin-3-gallate (EGCG), the bioactive polyphenol in green tea, has been demonstrated to have various biological activities. Our study aims to investigate the antiproliferation and antimigration effects of EGCG against bladder cancer SW780 cells both in vitro and in vivo. Our
Christina Ehrhardt et al.
Cellular microbiology, 15(7), 1198-1211 (2013-01-17)
Ongoing human infections with highly pathogenic avian H5N1 viruses and the emergence of the pandemic swine-origin influenza viruses (IV) highlight the permanent threat elicited by these pathogens. Occurrence of resistant seasonal and pandemic strains against the currently licensed antiviral medications
Johann Leban et al.
Bioorganic & medicinal chemistry letters, 17(21), 5858-5862 (2007-09-18)
A novel class of NF-kappaB pathway signaling inhibitors was discovered by virtual screening, medicinal chemistry, and QSAR analysis. An initial set of compounds inhibited NF-kappaB signaling in a whole cell reporter gene assay in the micro-molar range. Activity was improved
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service