Merck
CN
All Photos(2)

Documents

739316

Sigma-Aldrich

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

greener alternative

0.8% in H2O, conductive inkjet ink

Sign Into View Organizational & Contract Pricing

Synonym(s):
Orgacon IJ-1005, PEDOT:PSS, Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate)
MDL number:
NACRES:
NA.23

Quality Level

form

liquid

contains

1-5% Ethanol
5-10% Diethylene glycol

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

concentration

0.8% in H2O

sheet resistance

110 Ω/sq

refractive index

n20/D 1.340

pH

1.5-2.5

viscosity

7-12 cP(22 °C)

density

0.985 g/mL at 25 °C

greener alternative category

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an organic semiconductor wherein conjugated PEDOT is doped with sulfonated PSS, which acts as a counter ion. PEDOT is responsible for the conduction mechanism and the hydrated colloidal solution formed by PSS.
PEDOT:PSS has high electrical conductivity and good oxidation resistance, the properties which make it suitable for electromagnetic shielding and noise suppression. Thus, the polymeric film formed possesses high transparency throughout the visible light spectrum and even in near IR and near UV regions, displaying virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm was observed.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product is used in energy conversion and storage, thus has been enhanced for energy efficiency. Click here for more information.

Application

PEDOT:PSS acts as an intrinsically conductive polymer, which can be coated on a variety of substrates and nanoparticles like fullerenes (C60) for the low-cost printing of electronics and optoelectronics based applications. Conductive hydrogels can be prepared by using PEDOT:PSS with polyethylene glycol-diacrylate, which can be potentially used in tissue engineering.
Virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Conductive polymer blend.

Legal Information

Product of Agfa-Gevaert N.V.
Orgacon is a trademark of Agfa-Gevaert N.V.

Storage Class Code

10 - Combustible liquids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  4. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  5. Is a dried film of product 739316 (poly(3,4-Ethylenedioxythiophene)-poly(styrenesulfonate)) stable in air in a laboratory environment?

    Product 739316 (poly(3,4-Ethylenedioxythiophene)-poly(styrenesulfonate)) is susceptible to oxidation and photo degradation, however, our supplier has outlined that this concern is in reference to exposure to strong oxidizing agents and UV light in particular. The product when dried on target will be stable in a typical lab air environment, however, one will notice degradation and lack of conductivity when exposed to UV light, strong oxidizing conditions, heat, and or high humidity for extended periods of time.

  6. Why does product 739316, Orgacon IJ-1005, have a low pH?

    Orgacon IJ-1005 has a low pH because this ink is intended for use as an HIL (hole-injection layer) in OLED materials. Increasing pH would negatively affect the workfunction, but if you want to print on textiles to obtain conducting lines, you can slightly adjust the pH with amonia or an organic amine base. The ink is in water and typically needs to reach 130°C for drying.

  7. What can you tell me regarding the method of preparation of the PEDOT/PSS products, such as Products 768618 and 739316?

    The information on the molecular weights of the PEDOT and PSS used to make each batch is held as proprietary.The exact information on the relative amounts (by weight) of the PEDOT and PSS present in these polymers is also held as proprietary. There is a little more PSS than PEDOT; this is logical, since the formula weight for the monomeric equivalent in PSS (C7H6SO3) is a little higher than the formula weight for the monomeric equivalent in PEDOT (C6H4SO2).The solution, product 739316 is made in situ; it is not made from the dry pellets (product 768618).

  8. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

Mechanically robust, photopatternable conductive hydrogel composites.
Pal RK, et al.
Reactive and Functional Polymers, 120(4), 66-73 (2017)
New Conducting and Semiconducting Polymers for Organic Photovoltaics.
Sapp S and Luebben S
MRS Online Proceedings Library, 1270(4) (2010)
Adrien Pierre et al.
Advanced materials (Deerfield Beach, Fla.), 26(32), 5722-5727 (2014-06-20)
A combination of surface energy-guided blade coating and inkjet printing is used to fabricate an all-printed high performance, high yield, and low variability organic thin film transistor (OTFT) array on a plastic substrate. Functional inks and printing processes were optimized
The Influence of PEDOT to PSS Ratio on the Optical Properties of PEDOT: PSS Thin Solid Films-Insight from Spectroscopic Ellipsometry.
Bednarski H, et al.
Acta Physica Polonica A, 130(5), 1242-1244 (2016)
EFFECTIVENESS OF ANNEALING TREATMENT AND POLYMER BLENDS ON IV CHARACTERISTSICS OF POLYMER SOLAR CELL.
Rosa E and Shobih S
Reaktor, 14(4), 261-266 (2014)

Articles

A detailed article on conducting polymer materials for flexible organic photovoltaics (OPVs) applications.

In the field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), improved organic conducting and semiconducting materials are needed. The progress in two fields is reviewed in this article.

Conducting polymers such as polyaniline, polythiophene and polyfluorenes are now much in the spotlight for their applications in organic electronics and optoelectronics.

The emerging field of printed electronics requires a suite of functional materials for applications including flexible and large-area displays, radio frequency identification tags, portable energy harvesting and storage, biomedical and environmental sensor arrays,5,6 and logic circuits.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service