Skip to Content
Merck
CN
  • A FIT-binding protein is involved in modulating iron and zinc homeostasis in Arabidopsis.

A FIT-binding protein is involved in modulating iron and zinc homeostasis in Arabidopsis.

Plant, cell & environment (2018-04-21)
Chun-Lin Chen, Yan Cui, Man Cui, Wen-Juan Zhou, Hui-Lan Wu, Hong-Qing Ling
ABSTRACT

Fe and Zn are essential micronutrients for plant growth, and the interrelationship regarding their homeostasis is very complicated. In this study, we identified a FIT-binding protein (FBP) using the yeast two-hybrid system. The C-terminus of FBP binds to the bHLH domain of FIT, abolishing the DNA-binding capacity of FIT. Knockout of FBP results in an enhanced expression of NAS genes and a higher nicotianamine content, and the fbp mutant exhibits tolerance to excessive Zn. Physiological analyses reveal that the mutant fbp retains a larger amount of Zn in roots and transfers a greater proportion of Fe to shoots than that in wild type under Zn-excessive stress. As FBP is expressed in the root stele, the negative regulation caused by sequestration of FIT is restricted to this tissue, whereas other FIT-regulated genes, such as IRT1 and FRO2, which mainly expressed in root epidermis, do not show transcriptional upregulation in the fbp mutant. As an antagonistic partner, FBP offers a new approach to spatially fine-tune the expression of genes controlled by FIT. In conclusion, our findings provide a new insight to understand the interrelationship of Fe and Zn homeostasis in plants.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Influenza Hemagglutinin (HA) Peptide, ≥97% (HPLC)