Skip to Content
Merck
CN
  • A dual spectroscopic fluorescence probe based on carbon dots for detection of 2,4,6-trinitrophenol/Fe (III) ion by fluorescence and frequency doubling scattering spectra and its analytical applications.

A dual spectroscopic fluorescence probe based on carbon dots for detection of 2,4,6-trinitrophenol/Fe (III) ion by fluorescence and frequency doubling scattering spectra and its analytical applications.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2018-04-22)
Jinxia Xu, Zhangjun Bai, Fanlin Zu, Fanyong Yan, Junfu Wei, Saihui Zhang, Yunmei Luo
ABSTRACT

A convenient, highly sensitive and reliable assay for 2,4,6‑trinitrophenol (TNP) and Fe (III) ion (Fe3+) in the dual spectroscopic manner is developed based on novel carbon dots (CDs). The CDs with highly blue emitting fluorescent were easily prepared via the one-step potassium hydroxide-assisted reflux method from dextrin. The as-synthesized CDs exhibited the high crystalline quality, the excellent fluorescence characteristics with a high quantum yield of ~13.1%, and the narrow size distribution with an average diameter of 6.3±0.5nm. Fluorescence and frequency doubling scattering (FDS) spectra of CDs show the unique changes in the presence of TNP/Fe3+ by different mechanism. The fluorescence of CDs decreased apparently in the presence of TNP via electron-transfer. Thus, after the experimental conditions were optimized, the linear range for detection TNP is 0-50μM, the detection limit was 19.1nM. With the addition of Fe3+, the FDS of CDs appeared to be highly sensitive with a quick response to Fe3+ as a result of the change concentration of the scattering particle. The emission peak for FDS at 450nm was enhanced under the excitation wavelength at 900nm. The fluorescence response changes linearly with Fe3+ concentration in the range of 8-40μM, the detection limits were determined to be 44.1nM. The applications of CDs were extended for the detection of TNP, Fe3+ in real water samples with a high recovery. The results reported here may become the potential tools for the fast response of TNP and Fe3+ in the analysis of environmental pollutants.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
TNP, ≥95% (HPLC)
Sigma-Aldrich
Bisphenol A, 97%