Merck
CN
  • Reinforcement Learning Recruits Somata and Apical Dendrites across Layers of Primary Sensory Cortex.

Reinforcement Learning Recruits Somata and Apical Dendrites across Layers of Primary Sensory Cortex.

Cell reports (2019-02-21)
Clay O Lacefield, Eftychios A Pnevmatikakis, Liam Paninski, Randy M Bruno
ABSTRACT

The mammalian brain can form associations between behaviorally relevant stimuli in an animal's environment. While such learning is thought to primarily involve high-order association cortex, even primary sensory areas receive long-range connections carrying information that could contribute to high-level representations. Here, we imaged layer 1 apical dendrites in the barrel cortex of mice performing a whisker-based operant behavior. In addition to sensory-motor events, calcium signals in apical dendrites of layers 2/3 and 5 neurons and in layer 2/3 somata track the delivery of rewards, both choice related and randomly administered. Reward-related tuft-wide dendritic spikes emerge gradually with training and are task specific. Learning recruits cells whose intrinsic activity coincides with the time of reinforcement. Layer 4 largely lacked reward-related signals, suggesting a source other than the primary thalamus. Our results demonstrate that a sensory cortex can acquire a set of associations outside its immediate sensory modality and linked to salient behavioral events.