- PSPN/GFRalpha4 has a significantly weaker capacity than GDNF/GFRalpha1 to recruit RET to rafts, but promotes neuronal survival and neurite outgrowth.
PSPN/GFRalpha4 has a significantly weaker capacity than GDNF/GFRalpha1 to recruit RET to rafts, but promotes neuronal survival and neurite outgrowth.
Previously, it was shown that the recruitment of RET into lipid rafts by glial cell line-derived neurotrophic factor (GDNF)/GFRalpha1 is crucial for efficient signal transduction. Here, we show that the mouse GFRalpha4 is a functional, N-glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein, which mediates persephin (PSPN)-induced phosphorylation of RET, but has an almost undetectable capacity to recruit RET into the 0.1% Triton X-100 insoluble membrane fraction. In spite of this, PSPN/mGFRalpha4 promotes neurite outgrowth in PC6-3 cells and survival of cerebellar granule neurons. As we show that also human PSPN/GFRalpha4 is unable to recruit RET into lipid rafts, we propose that the mammalian GFRalpha4 in this respect differs from GFRalpha1.