Skip to Content
Merck
CN
  • Photoformation of reactive oxygen species and their potential to degrade highly toxic carbaryl and methomyl in river water.

Photoformation of reactive oxygen species and their potential to degrade highly toxic carbaryl and methomyl in river water.

Chemosphere (2019-12-04)
Aly Derbalah, Michael Sunday, Ryota Kato, Kazuhiko Takeda, Hiroshi Sakugawa
ABSTRACT

Reactive oxygen species (ROS) including singlet oxygen (1O2) and hydroxylradicals (OH) photogenerated in natural waters play important roles in indirect photolysis of man-made pollutants. This study was conducted to investigate how the generation of these two ROS influences the degradation of two highly toxic insecticides (methomyl and carbaryl) in river water. To accomplish this, the reaction rate constants of 1O2 and OH with carbaryl and methomyl were determined; the degradation rate constants of the tested insecticides in ultrapure water (direct photolysis) and in river water in the presence and absence of 1O2 and OH scavengers were also measured. The rate constants for the reaction of OH with carbaryl and methomyl were found to be (14.8 ± 0.64) × 109 and (4.68 ± 0.52) × 109 M-1 s-1, respectively. The reaction rate constant of 1O2 with carbaryl (2.98 ± 0.10) × 105 M-1 s-1, was much higher than that of methomyl (<104 M-1 s-1). Indirect photolysis by OH accounted for 63% and 62%, while 1O2 accounted for 26% and 30% and direct photolysis accounted for 1.4% and 7% of methomyl and carbaryl degradation, respectively. The high degradation rate in river water demonstrated by both insecticides suggests that indirect photolysis mediated by OH is an important means of their degradation in river water. In addition, kinetic calculations of OH-mediated degradation rate constants of the compounds agrees with their experimentally-determined values thereby confirming the importance of OH towards their degradation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Hydroxyterephthalic acid, 97%