- Supplementing conjugated and non-conjugated L-methionine and acetate alters expression patterns of CSN2, proteins and metabolites related to protein synthesis in bovine mammary cells.
Supplementing conjugated and non-conjugated L-methionine and acetate alters expression patterns of CSN2, proteins and metabolites related to protein synthesis in bovine mammary cells.
The experiments reported in this research paper aimed to determine the effect of supplementing different forms of L-methionine (L-Met) and acetate on protein synthesis in immortalized bovine mammary epithelial cell line (MAC-T cells). Treatments were Control, L-Met, conjugated L-Met and acetate (CMA), and non-conjugated L-Met and Acetate (NMA). Protein synthesis mechanism was determined by omics method. NMA group had the highest protein content in the media and CSN2 mRNA expression levels (P < 0.05). The number of upregulated and downregulated proteins observed were 39 and 77 in L-Met group, 62 and 80 in CMA group and 50 and 81 in NMA group from 448 proteins, respectively (P < 0.05). L-Met, NMA and CMA treatments stimulated pathways related to protein and energy metabolism (P < 0.05). Metabolomic analysis also revealed that L-Met, CMA and NMA treatments resulted in increases of several metabolites (P < 0.05). In conclusion, NMA treatment increased protein concentration and expression level of CSN2 mRNA in MAC-T cells compared to control as well as L-Met and CMA treatments through increased expression of milk protein synthesis-related genes and production of the proteins and metabolites involved in energy and protein synthesis pathways.