Skip to Content
Merck
CN
  • Chitosan-Sulfated Titania Composite Membranes with Potential Applications in Fuel Cell: Influence of Cross-Linker Nature.

Chitosan-Sulfated Titania Composite Membranes with Potential Applications in Fuel Cell: Influence of Cross-Linker Nature.

Polymers (2020-05-20)
Andra-Cristina Humelnicu, Petrisor Samoila, Mihai Asandulesa, Corneliu Cojocaru, Adrian Bele, Adriana T Marinoiu, Ada Saccà, Valeria Harabagiu
ABSTRACT

Chitosan-sulfated titania composite membranes were prepared, characterized, and evaluated for potential application as polymer electrolyte membranes. To improve the chemical stability, the membranes were cross-linked using sulfuric acid, pentasodium triphosphate, and epoxy-terminated polydimethylsiloxane. Differences in membranes' structure, thickness, morphology, mechanical, and thermal properties prior and after cross-linking reactions were evaluated. Membranes' water uptake capacities and their chemical stability in Fenton reagent were also studied. As proved by dielectric spectroscopy, the conductivity strongly depends on cross-linker nature and on hydration state of membranes. The most encouraging results were obtained for the chitosan-sulfated titania membrane cross-linked with sulfuric acid. This hydrated membrane attained values of proton conductivity of 1.1 × 10-3 S/cm and 6.2 × 10-3 S/cm, as determined at 60 °C by dielectric spectroscopy and the four-probes method, respectively.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
meso-Tetraphenylporphyrin, BioReagent, suitable for fluorescence, ≥99.0% (HPLC)
Sigma-Aldrich
Poly(dimethylsiloxane), viscosity 1.0 cSt (25 °C)
Sigma-Aldrich
1,3-Di-o-tolylguanidine, 99%