Skip to Content
Merck
CN

The structural basis for cohesin-CTCF-anchored loops.

Nature (2020-01-07)
Yan Li, Judith H I Haarhuis, Ángela Sedeño Cacciatore, Roel Oldenkamp, Marjon S van Ruiten, Laureen Willems, Hans Teunissen, Kyle W Muir, Elzo de Wit, Benjamin D Rowland, Daniel Panne
ABSTRACT

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-CTCF Antibody, serum, Upstate®
Sigma-Aldrich
Anti-Histone H4 Antibody, pan, clone 62-141-13, rabbit monoclonal, clone 62-141-13, Upstate®, from rabbit
Sigma-Aldrich
IgG from rabbit serum, reagent grade, ≥95% (SDS-PAGE), essentially salt-free, lyophilized powder
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, ascites fluid, clone B-5-1-2
Sigma-Aldrich
Anti-RAD21 Antibody, Upstate®, from mouse