Merck
CN
  • The effect of 5-alkyl modification on the biological activity of pyrrolo[2,3-d]pyrimidine containing classical and nonclassical antifolates as inhibitors of dihydrofolate reductase and as antitumor and/or antiopportunistic infection agents.

The effect of 5-alkyl modification on the biological activity of pyrrolo[2,3-d]pyrimidine containing classical and nonclassical antifolates as inhibitors of dihydrofolate reductase and as antitumor and/or antiopportunistic infection agents.

Journal of medicinal chemistry (2008-07-09)
Aleem Gangjee, Hiteshkumar D Jain, Sherry F Queener, Roy L Kisliuk
ABSTRACT

Novel classical antifolates (3 and 4) and 17 nonclassical antifolates (11-27) were synthesized as antitumor and/or antiopportunistic infection agents. Intermediates for the synthesis of 3, 4, and 11-27 were 2,4-diamino-5-alkylsubstituted-7H-pyrrolo[2,3-d]pyrimidines, 31 and 38, prepared by a ring transformation/ring annulation sequence of 2-amino-3-cyano-4-alkyl furans to which various aryl thiols were attached at the 6-position via an oxidative addition reaction using I2. The condensation of alpha-hydroxy ketones with malonodinitrile afforded the furans. For the classical analogues 3 and 4, the ester precursors were deprotected, coupled with diethyl-L-glutamate, and saponified. Compounds 3 (IC50 = 60 nM) and 4 (IC50 = 90 nM) were potent inhibitors of human DHFR. Compound 3 inhibited tumor cells in culture with GI50 <or= 10(-7) M. Nonclassical 17 (IC50 = 58 nM) was a potent inhibitor of Toxoplasma gondii (T. gondii) DHFR with >500-fold selectivity over human DHFR. Analogue 17 was 50-fold more potent than trimethoprim and about twice as selective against T. gondii DHFR.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trimethoprim, ≥99.0% (HPLC)
Sigma-Aldrich
Trimethoprim, ≥98.5%
Supelco
Trimethoprim, VETRANAL®, analytical standard