Skip to Content
Merck
CN

Enhanced Susceptibility of PINK1 Knockout Rats to α-Synuclein Fibrils.

Neuroscience (2020-05-01)
Rose B Creed, Matthew S Goldberg
ABSTRACT

The main neuropathological hallmarks of Parkinson's disease (PD) are loss of dopaminergic neurons in the substantia nigra and intraneuronal protein aggregates immunoreactive for α-synuclein phosphorylated at serine 129 (pS129). Most cases of PD are idiopathic; however, genetic mutations have been identified in several genes linked to familial PD. Mutations in the gene encoding α-synuclein are causally linked to dominantly inherited forms of PD and mutations in the PTEN-induced kinase-1 (PINK1) gene are linked to recessively inherited forms of PD. Because abnormal α-synuclein protein aggregates appear spontaneously in PINK1 knockout (KO) rats, we hypothesize that PINK1-deficiency causes endogenous α-synuclein to be more prone to aggregation. α-Synuclein aggregation does not normally occur in mice or rats, however, it can be induced by intracranial injection of α-synuclein pre-formed fibrils (PFFs), which also induces loss of dopaminergic nigral neurons 3-6 months post-injection. Because PINK1-deficiency is linked to early-onset PD, we further hypothesize that PINK1 KO rats will show earlier PFF-induced neurodegeneration compared to wild-type (WT) rats. Herein, we report that intracranial injection of α-synuclein PFFs into the dorsal striatum induced more abundant pS129 α-synuclein in PINK1 KO rat brains compared to WT littermate controls. Moreover, the synuclein extracted from the brains of PFF-injected PINK1 KO rats was more insoluble compared to PFF-injected WT littermates, suggesting greater progression of α-synuclein pathology in PINK1 KO rats. Four weeks post-injection, PFFs caused significant loss of dopaminergic neurons in the substantia nigra of PINK1 KO rats, but not WT controls. Together, our results indicate that PINK1 deficiency increases vulnerability to α-synuclein aggregation and dopaminergic neurodegeneration in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Tyrosine Hydroxylase Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse