Skip to Content
Merck
CN
  • Computationally guided in-vitro vascular growth model reveals causal link between flow oscillations and disorganized neotissue.

Computationally guided in-vitro vascular growth model reveals causal link between flow oscillations and disorganized neotissue.

Communications biology (2021-05-12)
Eline E van Haaften, Sjeng Quicken, Wouter Huberts, Carlijn V C Bouten, Nicholas A Kurniawan
ABSTRACT

Disturbed shear stress is thought to be the driving factor of neointimal hyperplasia in blood vessels and grafts, for example in hemodialysis conduits. Despite the common occurrence of neointimal hyperplasia, however, the mechanistic role of shear stress is unclear. This is especially problematic in the context of in situ scaffold-guided vascular regeneration, a process strongly driven by the scaffold mechanical environment. To address this issue, we herein introduce an integrated numerical-experimental approach to reconstruct the graft-host response and interrogate the mechanoregulation in dialysis grafts. Starting from patient data, we numerically analyze the biomechanics at the vein-graft anastomosis of a hemodialysis conduit. Using this biomechanical data, we show in an in vitro vascular growth model that oscillatory shear stress, in the presence of cyclic strain, favors neotissue development by reducing the secretion of remodeling markers by vascular cells and promoting the formation of a dense and disorganized collagen network. These findings identify scaffold-based shielding of cells from oscillatory shear stress as a potential handle to inhibit neointimal hyperplasia in grafts.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Papain from papaya latex, lyophilized powder, ≥10 units/mg protein
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Sigma-Aldrich
Mowiol® 4-88, Mw ~31,000
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt dihydrate, reagent grade, 98.5-101.5% (titration)
Sigma-Aldrich
Monoclonal Anti-Collagen, Type I antibody produced in mouse, clone COL-1, ascites fluid