Skip to Content
Merck
CN
  • Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling.

Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling.

The Plant journal : for cell and molecular biology (2016-09-20)
Kang Zhang, Wenying Xu, Chunchao Wang, Xin Yi, Wenli Zhang, Zhen Su
ABSTRACT

As a histone variant, H2A.Z is highly conserved among species and plays a significant role in diverse cellular processes. Here, we generated genome-wide maps of H2A.Z in Oryza sativa (rice) callus and seedling by combining chromatin immunoprecipitation using H2A.Z antibody and high-throughput sequencing. We found a significantly high peak and a small peak of H2A.Z distributed at the 5' and 3' ends of highly expressed genes, respectively. H2A.Z was also associated with inactive genes in both tissues. H3 lysine 4 trimethylation was associated with H2A.Z deposition at the 5' end of expressed genes, and H3 lysine 27 trimethylation peaks were partially associated with H2A.Z. In summary, our study provides global analysis data for the distribution of H2A.Z in the rice genome. Our results demonstrate that the differential deposition of H2A.Z might play important roles in gene transcription during rice development.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-trimethyl-Histone H3 (Lys4) Antibody, Upstate®, from rabbit
Sigma-Aldrich
Anti-trimethyl-Histone H3 (Lys27) Antibody, Upstate®, from rabbit