Skip to Content
Merck
CN
  • Nicotine Exacerbates TAAD Formation Induced by Smooth Muscle-Specific Deletion of the TGF-β Receptor 2.

Nicotine Exacerbates TAAD Formation Induced by Smooth Muscle-Specific Deletion of the TGF-β Receptor 2.

Journal of immunology research (2021-10-15)
Changzoon Chun, Xiaoyan Qi, Fen Wang, Kyle B Madrid, Lennon A Saldarriaga, Max R Fisch, Mark L Brantly, Gilbert R Upchurch, Zhihua Jiang
ABSTRACT

Tobacco smoke is an established risk factor for thoracic aortic aneurysms and dissections (TAAD). However, little is known about its underlying mechanisms due to the lack of validated animal models. The present study developed a mouse model that may be utilized to investigate exacerbation of TAAD formation by mimetics of tobacco smoke. TAADs were created via inducible deletion of smooth muscle cell-specific Tgfbr2 receptors. Using this model, the first set of experiments evaluated the efficacy of nicotine salt (34.0 mg/kg/day), nicotine free base (NFB, 5.0 mg 90-day pellets), and cigarette smoke extract (0.1 ml/mouse/day). Compared with their respective control groups, only NFB pellets promoted TAAD dilation (23 ± 3% vs. 12 ± 2%, P = 0.014), and this efficacy was achieved at a cost of >50% acute mortality. Infusion of NFB with osmotic minipumps at extremely high, but nonlethal, doses (15.0 or 45.0 mg/kg/day) failed to accelerate TAAD dilation. Interestingly, costimulation with β-aminopropionitrile (BAPN) promoted TAAD dilation and aortic rupture at dosages of 3.0 and 45.0 mg/kg/day, respectively, indicating that BAPN sensitizes the response of TAADs to NFB. In subsequent analyses, the detrimental effects of NFB were associated with clustering of macrophages, neutrophils, and T-cells in areas with structural destruction, enhanced matrix metalloproteinase- (MMP-) 2 production, and pathological angiogenesis with attenuated fibrosis in the adventitia. In conclusion, modeling nicotine exacerbation of TAAD formation requires optimization of chemical form, route of delivery, and dosage of the drug as well as the pathologic complexity of TAADs. Under the optimized conditions of the present study, chronic inflammation and adventitial mal-remodeling serve as critical pathways through which NFB exacerbates TAAD formation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Actin, α-Smooth Muscle - Cy3 antibody, Mouse monoclonal, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
Tamoxifen, ≥99%
Sigma-Aldrich
3-Aminopropionitrile fumarate salt, metabolite
Sigma-Aldrich
DAPI, for nucleic acid staining