Skip to Content
Merck
CN
  • Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase.

Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase.

Nature communications (2021-08-12)
Andrea Carrer, Ludovica Tommasin, Justina Šileikytė, Francesco Ciscato, Riccardo Filadi, Andrea Urbani, Michael Forte, Andrea Rasola, Ildikò Szabò, Michela Carraro, Paolo Bernardi
ABSTRACT

F-ATP synthase is a leading candidate as the mitochondrial permeability transition pore (PTP) but the mechanism(s) leading to channel formation remain undefined. Here, to shed light on the structural requirements for PTP formation, we test cells ablated for g, OSCP and b subunits, and ρ0 cells lacking subunits a and A6L. Δg cells (that also lack subunit e) do not show PTP channel opening in intact cells or patch-clamped mitoplasts unless atractylate is added. Δb and ΔOSCP cells display currents insensitive to cyclosporin A but inhibited by bongkrekate, suggesting that the adenine nucleotide translocator (ANT) can contribute to channel formation in the absence of an assembled F-ATP synthase. Mitoplasts from ρ0 mitochondria display PTP currents indistinguishable from their wild-type counterparts. In this work, we show that peripheral stalk subunits are essential to turn the F-ATP synthase into the PTP and that the ANT provides mitochondria with a distinct permeability pathway.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hanks′ Balanced Salts, Modified, without phenol red and sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone VIN-11-5, ascites fluid
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium, Without glucose, L-glutamine, phenol red, sodium pyruvate and sodium bicarbonate, powder, suitable for cell culture