Skip to Content
Merck
CN
  • Effects of central injection of kyotorphin and L-arginine on oxytocin and vasopressin release and blood pressure in conscious rats.

Effects of central injection of kyotorphin and L-arginine on oxytocin and vasopressin release and blood pressure in conscious rats.

Brain research bulletin (1998-04-04)
J Y Summy-Long, V Bui, S Gestl, E Koehler-Stec, H Liu, M L Terrell, M Kadekaro
ABSTRACT

Intracerebroventricular (I.C.V.) administration of an inhibitor of nitric oxide synthase (NOS) increases oxytocin but not vasopressin secretion, in dehydrated rats [38]. Surprisingly, central injection of L-arginine, the substrate for NOS, caused a similar effect. Kyotorphin (L-tyrosyl-L-arginine), a dipeptide formed from L-arginine by kyotorphin synthetase in the brain may mediate this magnocellular response. Therefore, the dose and time responses of hormone release were compared following I.C.V. injection of kyotorphin and L-arginine to conscious rats that were normally hydrated or deprived of water for 24 h. In water-sated rats, both L-arginine and kyotorphin increased blood pressure and plasma glucose levels coincident with elevating circulating levels of oxytocin, but not vasopressin. In dehydrated animals, both L-arginine and kyotorphin increased plasma oxytocin levels with a similar time course but only kyotorphin decreased vasopressin release. D-arginine, like L-arginine, stimulated secretion of oxytocin, indicating a nonstereospecific effect. A kyotorphin receptor antagonist (L-leucyl-L-arginine) given I.C.V. to dehydrated animals elevated plasma oxytocin and prevented the decrease in vasopressin levels after kyotorphin. Thus, kyotorphin, but not L-arginine, appears to attenuate release of vasopressin either directly from magnocellular neurons or indirectly via modulating compensatory reflexes activated by the pressor response. On the other hand, an excess of L-arginine and kyotorphin within the CNS may mimic the stress response by augmenting release of oxytocin and activating the sympathetic nervous system to increase blood pressure and plasma glucose levels.