Skip to Content
Merck
CN
  • NMNAT2 Inhibition Aggravates Neurological Damage after Traumatic Brain Injury in a Rat Model.

NMNAT2 Inhibition Aggravates Neurological Damage after Traumatic Brain Injury in a Rat Model.

Journal of Korean Neurosurgical Society (2022-10-28)
Xiaoyu Gu, Haibo Ni, XuGang Kan, Chen Chen, Zhiping Zhou, Zheng Ding, Di Li, Bofei Liu
ABSTRACT

Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a crucial factor for the survival of neuron. The role of NMNAT2 in damage following traumatic brain injury (TBI) remains unknown. This study was designed to investigate the role of NMNAT2 in TBI-induced neuronal degeneration and neurological deficits in rats. The TBI model was established in Sprague -Dawley rats by a weight-dropping method. Real-time polymerase chain reaction, western blot, immunofluorescence, Fluoro-Jade C staining, and neurological score analyses were carried out. NMNAT2 mRNA and protein levels were increased in the injured-side cortex at 6 h and peaked 12 h after TBI. Knocking down NMNAT2 with an injection of small interfering RNA in lateral ventricle significantly exacerbated neuronal degeneration and neurological deficits after TBI, which were accompanied by increased expression of Bax. NMNAT2 expression is increased and NMNAT2 exhibits neuroprotective activity in the early stages after TBI, and Bax signaling pathway may be involved in the process. Thus, NMNAT2 is likely to be an important target to prevent secondary damage following TBI.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-NeuN Antibody, clone A60, clone A60, Chemicon®, from mouse