- Low-affinity Ca2+ indicators compared in measurements of skeletal muscle Ca2+ transients.
Low-affinity Ca2+ indicators compared in measurements of skeletal muscle Ca2+ transients.
The low-affinity fluorescent Ca(2+) indicators OGB-5N, Fluo-5N, fura-5N, Rhod-5N, and Mag-fluo-4 were evaluated for their ability to accurately track the kinetics of the spatially averaged free Ca(2+) transient (Delta[Ca(2+)]) in skeletal muscle. Frog single fibers were injected with one of the above indicators and, usually, furaptra (previously shown to rapidly track Delta[Ca(2+)]). In response to an action potential, the full duration at half-maximum of the indicator's fluorescence change (DeltaF) was found to be larger with OGB-5N, Fluo-5N, fura-5N, and Rhod-5N than with furaptra; thus, these indicators do not track Delta[Ca(2+)] with kinetic fidelity. In contrast, the DeltaF time course of Mag-fluo-4 was identical to furaptra's; thus, Mag-fluo-4 also yields reliable kinetic information about Delta[Ca(2+)]. Mag-fluo-4's DeltaF has a larger signal/noise ratio than furaptra's (for similar indicator concentrations), and should thus be more useful for tracking Delta[Ca(2+)] in small cell volumes. However, because the resting fluorescence of Mag-fluo-4 probably arises largely from indicator that is bound with Mg(2+), the amplitude of the Mag-fluo-4 signal, and its calibration in Delta[Ca(2+)] units, is likely to be more sensitive to variations in [Mg(2+)] than furaptra's.