Skip to Content
Merck
CN
  • Thionate versus Oxon: comparison of stability, uptake, and cell toxicity of ((14)CH(3)O)(2)-labeled methyl parathion and methyl paraoxon with SH-SY5Y cells.

Thionate versus Oxon: comparison of stability, uptake, and cell toxicity of ((14)CH(3)O)(2)-labeled methyl parathion and methyl paraoxon with SH-SY5Y cells.

Journal of agricultural and food chemistry (2010-07-02)
Sandip B Bharate, John M Prins, Kathleen M George, Charles M Thompson
ABSTRACT

The stability, hydrolysis, and uptake of the organophosphates methyl parathion and methyl paraoxon were investigated in SH-SY5Y cells. The stabilities of ((14)CH(3)O)(2)-methyl parathion ((14)C-MPS) and ((14)CH(3)O)(2)-methyl paraoxon ((14)C-MPO) at 1 microM in culture media had similar half-lives of 91.7 and 101.9 h, respectively. However, 100 microM MPO caused >95% cytotoxicity at 24 h, whereas 100 microM MPS caused 4-5% cytotoxicity at 24 h ( approximately 60% cytotoxicity at 48 h). Greater radioactivity was detected inside cells treated with MPO as compared to MPS, although >80% of the total MPO uptake was primarily dimethyl phosphate (DMP). Maximum uptake was reached after 48 h of (14)C-MPS or (14)C-MPO exposure with total uptakes of 1.19 and 1.76 nM/10(6) cells for MPS and MPO, respectively. The amounts of MPS and MPO detected in the cytosol after 48 h of exposure time were 0.54 and 0.37 nM/10(6) cells, respectively.

MATERIALS
Product Number
Brand
Product Description

Supelco
Paraoxon-methyl, PESTANAL®, analytical standard