Skip to Content
Merck
CN
  • Reconstitution studies of lipid effects on insulin-receptor kinase activation.

Reconstitution studies of lipid effects on insulin-receptor kinase activation.

European journal of biochemistry (1993-04-01)
V Leray, P Hubert, C Burgun, C Staedel, G Crémel
ABSTRACT

Insulin receptors extracted from human placenta were reconstituted by dialysis into well-characterized lipid vesicles. For all types of lipids studied, vesicles were shown to be unilamellar, about 120 nm in diameter. The incorporation of lectin-purified insulin receptors was assessed by cosedimentation of 125I-insulin binding and [32P]phospholipids in a sucrose gradient. The insulin-binding activity was not modified by the composition of the lipid vesicles. However, tyrosine kinase activation appeared to be more sensitive to its lipid environment. Mixtures of phosphatidylcholine/phosphatidylserine or phospholipids/phosphatidylserine, in ratios of 1-4, increased the insulin-induced tyrosine kinase activation in a dose-dependent manner. In contrast, experiments performed in the presence of phosphatidylinositol showed a decrease in the enzyme stimulation. These results indicate an opposing involvement of these two anionic phospholipids in the kinase activation. Inclusion of cholesterol (10-30%) into phosphatidylcholine vesicles reduced kinase activation, which was drastically inhibited by 30% cholesterol. The effect of a total extract of brain gangliosides was biphasic, stimulatory at low concentration (5-10%), but with a reverse effect at higher concentrations. These results stress the importance of the lipid environment for insulin-receptor signaling, particularly for the insulin-induced activation of its beta-subunit kinase.